The strong degeneracy of the 12C ignition layer on an accreting neutron star
results in a hydrodynamic thermonuclear runaway, in which the nuclear heating
time becomes shorter than the local dynamical time. We model the resulting
combustion wave during these superbursts as an upward propagating detonation.
We solve the reactive fluid flow and show that the detonation propagates
through the deepest layers of fuel and drives a shock wave that steepens as it
travels upward into lower density material. The shock is sufficiently strong
upon reaching the freshly accreted H/He layer that it triggers unstable 4He
burning if the superburst occurs during the latter half of the regular Type I
bursting cycle; this is likely the origin of the bright Type I precursor bursts
observed at the onset of superbursts. The cooling of the outermost shock-heated
layers produces a bright, ~0.1s, flash that precedes the Type I burst by a few
seconds; this may be the origin of the spike seen at the burst onset in 4U
1820-30 and 4U 1636-54, the only two bursts observed with RXTE at high time
resolution. The dominant products of the 12C detonation are 28Si, 32S, and
36Ar. Gupta et al. showed that a crust composed of such intermediate mass
elements has a larger heat flux than one composed of iron-peak elements and
helps bring the superburst ignition depth into better agreement with values
inferred from observations.Comment: 11 pages, 11 figures, accepted to ApJ; discussion about onset of
detonation discussed in new detail, including a new figur