1,558 research outputs found

    Singularities of the renormalization group flow for random elastic manifolds

    Full text link
    We consider the singularities of the zero temperature renormalization group flow for random elastic manifolds. When starting from small scales, this flow goes through two particular points ll^{*} and lcl_{c}, where the average value of the random squared potential turnes negative ($l^{*}$) and where the fourth derivative of the potential correlator becomes infinite at the origin ($l_{c}$). The latter point sets the scale where simple perturbation theory breaks down as a consequence of the competition between many metastable states. We show that under physically well defined circumstances $l_{c} to negative values does not take place.Comment: RevTeX, 3 page

    The Amplitude Mode in the Quantum Phase Model

    Full text link
    We derive the collective low energy excitations of the quantum phase model of interacting lattice bosons within the superfluid state using a dynamical variational approach. We recover the well known sound (or Goldstone) mode and derive a gapped (Higgs type) mode that was overlooked in previous studies of the quantum phase model. This mode is relevant to ultracold atoms in a strong optical lattice potential. We predict the signature of the gapped mode in lattice modulation experiments and show how it evolves with increasing interaction strength.Comment: 4 pages, 3 figure

    Nonequilibrium gas-liquid transition in the driven-dissipative photonic lattice

    Full text link
    We study the nonequilibrium steady state of the driven-dissipative Bose-Hubbard model with Kerr nonlinearity. Employing a mean-field decoupling for the intercavity hopping JJ, we find that the steep crossover between low and high photon-density states inherited from the single cavity transforms into a gas-liquid bistability at large cavity-coupling JJ. We formulate a van der Waals like gas-liquid phenomenology for this nonequilibrium situation and determine the relevant phase diagrams, including a new type of diagram where a lobe-shaped boundary separates smooth crossovers from sharp, hysteretic transitions. Calculating quantum trajectories for a one-dimensional system, we provide insights into the microscopic origin of the bistability.Comment: 5 pages, 4 figures + Supplemental Material (2 pages, 2 figures

    Strong coupling theory for the Jaynes-Cummings-Hubbard model

    Full text link
    We present an analytic strong-coupling approach to the phase diagram and elementary excitations of the Jaynes-Cummings-Hubbard model describing a superfluid-insulator transition of polaritons in an array of coupled QED cavities. In the Mott phase, we find four modes corresponding to particle/hole excitations with lower and upper polaritons, respectively. Simple formulas are derived for the dispersion relation and spectral weights within a strong-coupling random-phase approximation (RPA). The phase boundary is calculated beyond RPA by including the leading correction due to quantum fluctuations.Comment: 4 pages, 3 figures, minor changes, final version accepted for publication in PR

    Non-equilibrium delocalization-localization transition of photons in circuit QED

    Full text link
    We show that photons in two tunnel-coupled microwave resonators each containing a single superconduct- ing qubit undergo a sharp non-equilibrium delocalization-localization (self-trapping) transition due to strong photon-qubit coupling. We find that dissipation favors the self-trapped regime and leads to the possibility of observing the transition as a function of time without tuning any parameter of the system. Furthermore, we find that self-trapping of photons in one of the resonators (spatial localization) forces the qubit in the opposite resonator to remain in its initial state (energetic localization). This allows for an easy experimental observation of the transition by local read-out of the qubit state.Comment: 4 pages, 5 figure

    Casimir Force between Vortex Matter in Anisotropic and Layered Superconductors

    Full text link
    We present a new approach to calculate the attractive long range vortex-vortex interaction of the van der Waals type present in anisotropic and layered superconductors. The mapping of the statistical mechanics of vortex lines onto the imaginary time quantum mechanics of two dimensional charged bosons allows us to define a 2D Casimir problem: Two half-spaces of (dilute) vortex matter separated by a gap of width R are mapped to two dielectric half-planes of charged bosons interacting via a massive gauge field. We determine the attractive Casimir force between the two half-planes and show, that it agrees with the pairwise summation of the van der Waals force between vortices previously found by Blatter and Geshkenbein [Phys. Rev. Lett. 77, 4958 (1996)]Comment: 11 pages, 3 figure

    About the origin of European spelt ( Triticum spelta L.): allelic differentiation of the HMW Glutenin B1-1 and A1-2 subunit genes

    Get PDF
    To investigate the origin of European spelt (Triticum spelta L., genome AABBDD) and its relation to bread wheat (Triticum aestivum L., AABBDD), we analysed an approximately 1-kb sequence, including a part of the promoter and the coding region, of the high-molecular-weight (HMW) glutenin B1-1 and A1-2 subunit genes in 58 accessions of hexa- and tetraploid wheat from different geographical regions. Six Glu-B1-1 and five Glu-A1-2 alleles were identified based on 21 and 19 informative sites, respectively, which suggests a polyphyletic origin of the A- and B-genomes of hexaploid wheat. In both genes, a group of alleles clustered in a distinct, so-called beta subclade. High frequencies of alleles from the Glu-B1-1 and Glu-A1-2 beta subclades differentiated European spelt from Asian spelt and bread wheat. This indicates different origins of European and Asian spelt, and that European spelt does not derive from the hulled progenitors of bread wheat. The conjoint differentiation of alleles of the A- and B-genome in European spelt suggests the introgression of a tetraploid wheat into free-threshing hexaploid wheat as the origin of European spel

    Vortex Entanglement and Broken Symmetry

    Full text link
    Based on the London approximation, we investigate numerically the stability of the elementary configurations of entanglement, the twisted-pair and the twisted-triplet, in the vortex-lattice and -liquid phases. We find that, except for the dilute limit, the twisted-pair is unstable and hence irrelevant in the discussion of entanglement. In the lattice phase the twisted-triplet constitutes a metastable, confined configuration of high energy. Loss of lattice symmetry upon melting leads to deconfinement and the twisted-triplet turns into a low-energy helical configuration.Comment: 4 pages, RevTex, 2 figures on reques

    Scaling of the microwave magneto-impedance in Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} thin films

    Full text link
    We present measurements of the magnetic field-induced microwave complex resistivity changes at 47 GHz in Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} (TBCCO) thin films, in the ranges 58 K<T<Tc<T<T_{c} and 0<μ0H<<\mu_{0}H<0.8 T. The large imaginary part Δρ2(H)\Delta\rho_{2}(H) points to strong elastic response, but the data are not easily reconciled with a rigid vortex model. We find that, over a wide range of temperatures, all the pairs of curves Δρ1(H)\Delta\rho_{1}(H) and Δρ2(H)\Delta\rho_{2}(H) can be collapsed on a pair of scaling curves Δρ1[H/H(T)]\Delta\rho_{1}[H/H^{*}(T)], Δρ2[H/H(T)]\Delta\rho_{2}[H/H^{*}(T)], with the same scaling field H(T)H^{*}(T). We argue that H(T)H^{*}(T) is related to the loss of vortex rigidity due to a vortex transformation.Comment: Two printed pages, Proceedings of M2S (Dresden, 2006), to appear in Physica
    corecore