12 research outputs found
Numerical modeling of regional stress distributions for geothermal exploration
International audienceAny high-enthalpy unconventional geothermal projectcan be jeopardized by the uncertainty on the presence of the geothermal resource at depth. Indeed, for the majority of such projects the geothermal resource is deeply seated and, with the drilling costs increasing accordingly, must be located as precisely as possible to increase the chance of their economic viability. In order to reduce the " geological risk " , i.e. the chance to poorly locate the geothermal resource, a maximum amount of information must be gathered prior to any drilling of exploration and/or operational well. Cross-interpretation from multiple disciplines (e.g., geophysics, hydrology, geomechanics. . .) should improve locating the geothermal resource and so the position of exploration wells ; this is the objective of the Euro-pean project IMAGE (grant agreement No. 608553), under which the work presented here was carried out. As far as geomechanics is concerned, in situ stresses can have a great impact on the presence of a geothermal resource since they condition both the regime within the rock mass, and the state of the major fault zones (and hence, the possible flow paths). In this work, we propose a geomechanical model to assess the stress distribution at the regional scale (characteristic length of 100 kilometers). Since they have a substantial impact on the stress distributions and on the possible creation of regional flow paths, the major fault zones are explicitly taken into account. The Distinct Element Method is used, where the medium is modeled as fully deformable blocks representing the rock mass interacting through mechanically active joints depicting the fault zones. The first step of the study is to build the model geometry based on geological and geophysical evidences. Geophysical and structural geology results help positioning the major fault zones in the first place. Then, outcrop observations, structural models and site-specific geological knowledge give information on the fault zones family sets and their priority rule. In the second step, the physical model must be established, including constitutive equations for the rock mass and the fault zones, initial state and boundary conditions. At such large scales, physical laws and parameters are difficult to assess and must be constrained by sensitivity analysis. In the last step of the study, the results can be interpreted to highlight areas where the mechanical conditions favor the presence of a geothermal resource. The DEM enables accounting for the strong stress redistributions inherent to highly-segmented geometries, and to the dilational opening of fault zones under shearing. A 130x150 square-kilometers region within the Upper Rhine Graben is used as a case-study to illustrate the building and interpretation of a regional stress model
Numerical assessment of the near-wellbore rock matrix permeability gain due to thermal stimulation
International audienc
Adapted numerical modelling strategy developed to support EGS deployment.
International audienceThe exploitation of Enhanced/Engineered Geothermal Systems (EGS), for electricity and/or heat production, is a promising way to increase the amount of renewable energies contribution in the energetic mix in Europe. In regard to the required production characteristics (production temperature and flowrate) for the economical viability of EGS, the favourable targeted geological systems are deep and fractured. In order to reduce the risks and the prohibitive costs linked to the depth of such geothermal systems, numerical modelling is a useful tool to understand such deep fractured systems and to help in the construction and in the management of the deep infrastructures (wells architecture, stimulation of wells, implementation of adapted network of wells). Nevertheless, this forces to a change of paradigm in comparison to « classical » reservoir modelling based on mechanics of continuum media. Indeed 3D Discrete Fracture Network (DFN) approach looks fairly adapted to catch the mechanical and hydraulic phenomena in the fractured rock mass around wells and to understand the global systems in the network of wells. The conceptualisation of the fractured rock mass is a crucial step for such DFN models not only for the geometry but also to constrain the constitutive behaviour of singularities (fault zones, fractures etc.), depending on the tectonic context. We present some results illustrating how DFNs can be used to study the EGS behaviour at several scales
Modélisations couplées Hydro-Mécaniques en milieux poreux partiellent saturés : application à la ventilation de galeries profondes
During the last decades, the study of coupling phenomena became more and more important in Geomechanics and Civil Engineering. Radioactive wastes repository in deep geological formation is a perfect illustration of this kind of problems. Indeed, due to numerous stakes, all acting phenomena must be considered in order to determine the first fonctionnality of the repository structure: the full safety confining of radioactive wastes. During the building period of the repository structures, the excavation and the ventilation of galleries induce solicitation of the surrounding rock mass. The abject of this work is to characterize the importance .and the nature of this solicitation. It's fundamental to determine the phenomena kinetics (progression of the drying front induced by ventilation, the extent of the perturbated zone) and the strengh of induced couplings (stresses in front of gallery, damage). The aim of all this considerations is to evaluate the eventual modifications of the rock and its confining abilities. The theoretical approach is the Mechanics of Porous Media defined by Coussy (1995), which leads to a formalism at the macroscopic scale and allows to determine the evolutions of the rock, considered as partially saturated porous medium (three-phases medium). The aim of the different models presented in this work is to describe the fluids transfers in the rock mass and to take into account constitutive aspects of the mechanical behavior of the rock (damage, plasticity).Durant les dernières décennies, l'étude des phénomènes couplés a pris une importance considérable dans de nombreux problèmes de la Géomécanique et du Génie Civil. Le stockage des déchets radioactifs en formations géologiques profondes est une parfaite illustration de ce genre de problème. En effet du fait des nombreux enjeux, il va être nécessaire de prendre en compte tous les phénomènes intervenant, afin de pouvoir tirer des conclusions sur la fonctionnalité première de la structure de stockage à savoir: le confinement en toute sûreté des déchets radioactifs. Durant la phase de construction des structures de stockage, le creusement et la ventilation des galeries vont solliciter le massif rocheux environnant. L'objet de ce travail est de caractériser l'importance et la nature de cette sollicitation. Il est notamment primordial de déterminer la cinétique des phénomènes (progression du front de séchage induit par la ventilation, étendue de la zone perturbée) et la forces des couplages induits (contraintes en paroi des galeries, endommagement, etc.). Toutes ces considérations ont pour but d'évaluer les modifications éventuelles de la roche et ainsi ses capacités de confinement. L'approche théorique retenue est celle de la Mécanique des Milieux Poreux définie par Coussy (1995) permettant, grâce à un formalisme à l'échelle macroscopique, de déterminer les évolutions de la roche en tant que milieu poreux partiellement saturé (formé d'une phase solide, d'une phase liquide et d'une phase gazeuse). Les différents modèles présentés dans ce travail ont pour objectif de traduire au mieux les transferts de fluides au sein du massif rocheux mais également les aspects constitutifs liés au comportement mécanique de la roche (endommagement, plasticité)
Modélisations couplées Hydro-Mécaniques en milieux poreux partiellent saturés (application à la ventilation de galeries profondes)
Durant les dernières décennies, l'étude des phénomènes couplés a pris une importance considérable dans de nombreux problèmes de la Géomécanique et du Génie Civil. Le stockage des déchets radioactifs en formations géologiques profondes est une parfaite illustration de ce genre de problème. En effet du fait des nombreux enjeux, il va être nécessaire de prendre en compte tous les phénomènes intervenant, afin de pouvoir tirer des conclusions sur la fonctionnalité première de la structure de stockage à savoir: le confinement en toute sûreté des déchets radioactifs. Durant la phase de construction des structures de stockage, le creusement et la ventilation des galeries vont solliciter le massif rocheux environnant. L'objet de ce travail est de caractériser l'importance et la nature de cette sollicitation. Il est notamment primordial de déterminer la cinétique des phénomènes (progression du front de séchage induit par la ventilation, étendue de la zone perturbée) et la forces des couplages induits (contraintes en paroi des galeries, endommagement, etc.). Toutes ces considérations ont pour but d'évaluer les modifications éventuelles de la roche et ainsi ses capacités de confinement. L'approche théorique retenue est celle de la Mécanique des Milieux Poreux définie par Coussy (1995) permettant, grâce à un formalisme à l'échelle macroscopique, de déterminer les évolutions de la roche en tant que milieu poreux partiellement saturé (formé d'une phase solide, d'une phase liquide et d'une phase gazeuse). Les différents modèles présentés dans ce travail ont pour objectif de traduire au mieux les transferts de fluides au sein du massif rocheux mais également les aspects constitutifs liés au comportement mécanique de la roche (endommagement, plasticité).NANCY-INPL-Bib. électronique (545479901) / SudocSudocFranceF
Impact of faults and their mechanical properties on the regional stress field
International audienc
Eléments de réflexion sur le comportement mécanique des zones de faille dans un modèle 3D DEM pour la stimulation hydraulique des puits dans les réservoirs géothermiques
International audienceL'étude présentée ici vise à étudier l'influence, lors de stimulation hydraulique de puits dans les réservoirs géothermiques de type Enhanced Geothermal System (EGS), du comportement mécanique des zones de failles recoupant le puits sur la réponse hydraulique du réseau de fractures 3D. Dans ce but, un modèle 3D, basé sur la méthode des éléments distincts et dans lequel les zones de failles recoupant le puits sont modélisées par des fractures numériques 2D, est mis en oeuvre. Les modélisations présentées ici visent à caractériser l'influence du comportement mécanique (type de comportement, hétérogénéité) sur la cinétique de la stimulation hydraulique, ainsi que sur son effet spatial autour du puits
Modélisations mécanique et hydraulique pour la compréhension des interactions fluide/roche en fracture : Mechanical and hydraulic modelling for the understanding of fluid/rock interactions in fracture
Les modèles hydraulique et mécanique mis en œuvre pour aider à la compréhension et à l'interprétation des essais de percolation réactive en fracture sont présentés. Ces modèles sont basés sur la construction d'un modèle géométrique à partir de données morphologiques de la fracture. Hydraulic and mechanical models implemented to improve the understanding of reactive percolation tests in a fracture are presented. Both models are based on the construction of a geometrical model built on the base of morphological data
Study of Thermo-Mechanical Damage around Deep Geothermal Wells: from the Micro-Processes to Macroscopic Effects in the Near Well
International audienceThe different processes involved in the life of a geothermal well, from drilling to exploitation, can damage the rock mass in the near well area. In this paper, we propose to study the potential damage linked to the mechanical and thermo-mechanical effects of the well drilling, the well development and the well exploitation. The cooling of the rock mass of the near well pre-damaged by drilling process is a complex phenomenon with the superimposition of different kind of loadings at different scale that lead us to use modeling with a micro-macro approach. To confront the results of the modeling with the reality, we propose to base our study on real cases. For studying mechanical and thermo-mechanical loadings due to drilling and development of the well, we focus our study on the granitic reservoir exploited in the framework of the enhanced geothermal system (EGS) of Soultz-sous-Forêts (France). The study of the thermo-mechanical loading due to well exploitation is performed for a sandstone in the conventional heat exploitation of Melleray (Loiret, France). These simulations highlight the thermo-mechanical damage of a geothermal well linked to the different steps of its life
Locating Geothermal Resources: Insights from 3D Stress and Flow Models at the Upper Rhine Graben Scale
To be exploited, geothermal resources require heat, fluid, and permeability. These favourable geothermal conditions are strongly linked to the specific geodynamic context and the main physical transport processes, notably stresses and fluid circulations, which impact heat-driving processes. The physical conditions favouring the setup of geothermal resources can be searched for in predictive models, thus giving estimates on the so-called “favourable areas.” Numerical models could allow an integrated evaluation of the physical processes with adapted time and space scales and considering 3D effects. Supported by geological, geophysical, and geochemical exploration methods, they constitute a useful tool to shed light on the dynamic context of the geothermal resource setup and may provide answers to the challenging task of geothermal exploration. The Upper Rhine Graben (URG) is a data-rich geothermal system where deep fluid circulations occurring in the regional fault network are the probable origin of local thermal anomalies. Here, we present a current overview of our team’s efforts to integrate the impacts of the key physics as well as key factors controlling the geothermal anomalies in a fault-controlled geological setting in 3D physically consistent models at the regional scale. The study relies on the building of the first 3D numerical flow (using the discrete-continuum method) and mechanical models (using the distinct element method) at the URG scale. First, the key role of the regional fault network is taken into account using a discrete numerical approach. The geometry building is focused on the conceptualization of the 3D fault zone network based on structural interpretation and generic geological concepts and is consistent with the geological knowledge. This DFN (discrete fracture network) model is declined in two separate models (3D flow and stress) at the URG scale. Then, based on the main characteristics of the geothermal anomalies and the link with the physics considered, criteria are identified that enable the elaboration of indicators to use the results of the simulation and identify geothermally favourable areas. Then, considering the strong link between the stress, fluid flow, and geothermal resources, a cross-analysis of the results is realized to delineate favourable areas for geothermal resources. The results are compared with the existing thermal data at the URG scale and compared with knowledge gained through numerous studies. The good agreement between the delineated favourable areas and the locations of local thermal anomalies (especially the main one close to Soultz-sous-Forêts) demonstrates the key role of the regional fault network as well as stress and fluid flow on the setup of geothermal resources. Moreover, the very encouraging results underline the potential of the first 3D flow and 3D stress models at the URG scale to locate geothermal resources and offer new research opportunities