31,484 research outputs found
Possible Observational Criteria for Distinguishing Brown Dwarfs from Planets
The difference in formation process between binary stars and planetary
systems is reflected in their composition as well as their orbital
architecture, particularly orbital eccentricity as a function of orbital
period. It is suggested here that this difference can be used as an
observational criterion to distinguish between brown dwarfs and planets.
Application of the orbital criterion suggests that with three possible
exceptions, all of the recently-discovered substellar companions discovered to
date may be brown dwarfs and not planets. These criterion may be used as a
guide for interpretation of the nature of sub-stellar mass companions to stars
in the future.Comment: LaTeX, 11 pages including 2 figures, accepted for publication in the
Astrophysical Journal Letter
An assessment of ground-based techniques for detecting other planetary systems. Volume 1: An overview
The feasibility and limitations of ground-based techniques for detecting other planetary systems are discussed as well as the level of accuracy at which these limitations would occur and the extent to which they can be overcome by new technology and instrumenation. Workshop conclusions and recommendations are summarized and a proposed high priority program is considered
Models for application of radiation boundary condition for MHD waves in collapse calculations
The problem of reflection of magnetohydrodynamic (MHD) waves at the boundary of a numerical grid has to be resolved in order to obtain reliable results for the end state of the (isothermal) collapse of a rotating, magnetic protostellar cloud. Since the goal of investigating magnetic braking in collapse simulations is to see if the transport of angular momentum via alfven waves is large enough to solve the angular momentum problem an approximation that artificially suppresses large amplitudes in the MHD waves can be self-defeating. For this reason, four alternate methods of handling reflected waves where no assumptions are made regarding the amplitudes of the waves were investigated. In order to study this problem (of reflection) without interference from other effects these methods were tried on two simpler cases. The four methods are discussed
A basic lock-in amplifier experiment for the undergraduate laboratory
We describe a basic experiment for the undergraduate laboratory that demonstrates aspects of both, the science and the art of precision electronic measurements. The essence of the experiment is to measure the resistance of a small length of brass-wire to high accuracy using a simple voltage divider and a lock-in amplifier. By performing the measurement at different frequencies and different drive currents, one observes various random noise sources and systematic measurement effects
Numerical studies of collapsing interstellar clouds
Numerical simulation of the structure and evolution of interstellar clouds was initiated. Steps were taken toward an integrated treatment of the dynamical, thermal, and chemical processes entering model calculations. A detailed study was made of radiative transfer in molecular lines to allow model predictions to be tested against empirical data. The calculations have successfully reproduced and explained several observed cloud properties, including abundances of complex molecular species and the apparent depletion of CO in dense cores
Parity Effect in a Small Superconducting Particle
Matveev and Larkin calculated the parity effect on the ground state energy of
a small superconducting particle in the regimes where the mean level spacing is
either large or small compared to the bulk gap. We perform a numerical
calculation which extends their results into the intermediate regime, where the
level spacing is of the same order as the bulk gap.Comment: 6 LaTeX pages, including 2 EPS figures; corrected reference and
spellin
Light forces in ultracold photoassociation
We study the time-resolved photoassociation of ultracold sodium in an optical
dipole trap. The photoassociation laser excites pairs of atoms to molecular
states of large total angular momentum at high intensities (above 20
kW/cm). Such transitions are generally suppressed at ultracold
temperatures by the centrifugal barriers for high partial waves. Time-resolved
ionization measurements reveal that the atoms are accelerated by the dipole
potential of the photoassociation beam. We change the collision energy by
varying the potential depth, and observe a strong variation of the
photoassociation rate. These results demonstrate the important role of light
forces in cw photoassociation at high intensities.Comment: 7 pages, 3 figure
Microwave Remote Sensing of Ocean Surface Wind Speed and Rain Rates over Tropical Storms
The value of using narrowly spaced frequencies within a microwave band to measure wind speeds and rain rates over tropical storms with radiometers is reviewed. The technique focuses on results obtained in the overflights of Hurricane Allen during 5 and 8 of August, 1980
- …