82 research outputs found
Plant Mediated Interactions: Lower Sawfly Survival on Pines Previously Browsed by Moose
Insect herbivore performance and arthropod communities can be affected by mammalian grazing and browsing via altered plant communities and vegetation structure. Far less is known about whether changes to plant architecture can cause similar effects. Browsing generated changes to within plant architecture could potentially have large consequences for arthropod communities, herbivore survival and eventually damage to plants. This study investigates plant-mediated effects of ungulate browsing on arthropod predator communities and on the survival of herbivorous insects. More specifically we studied how different levels of ungulate browsing (1) influenced the arthropod predator community on Scots pine (Pinus sylvestris) and (2) affected the survival of the European pine sawfly (Neodiprion sertifer). We related these response variables to browsing-inflicted changes in pine architecture. An observational study of generalist arthropod predators on pine trees revealed a trend toward a quadratic response of ants to browsing intensity-i.e., a higher abundance of ants on moderately browsed trees and lower abundance on intensively browsed trees. A field survey of sawfly larvae revealed a 19% lower larval survival on browsed compared to un-browsed pines, but no difference in survival comparing pines with moderate and high intensity of browsing. A structural equation model revealed that moose generated changes to pine architecture had only a small effect on sawfly larval survival, suggesting additional mediating pine traits affected by browsing. We conclude that insect survival can be altered by ungulate browsing, which could affect damage levels
Predator refuges for conservation biological control in an intermediately disturbed system: the rise and fall of a simple solution
1. Managed systems harvested at intermediate time-scales have advantages over annual short-cycled systems in maintaining top-down control of insect herbivores, and the flexible harvest regimes in these systems provide opportunities for habitat management that can stabilize predator-prey population dynamics across harvests - resulting in reduced risk of pest outbreaks.
2. In a large-scale field experiment, we explored whether retaining refuges, that is preserving parts of the stand to reduce predator mortality, could reduce the risk of pest insect outbreaks in willow short-rotation coppice. Population densities of three omnivorous predator species and three outbreaking herbivorous leaf beetle species were monitored over four years aftercoppice (stem harvest) in eight stands with refuges (treatment) and eight stands without refuges (control). Predation pressure was estimated in years three and four.
3. Contrary to our predictions, leaf beetle densities were higher in stands with refuges and predator densities were higher in stands without refuges. Leaf beetle egg mortality increased with total predator density, but did not differ between stands with and without refuges.
4. These unexpected results can be attributed to interactions between dispersal and patchage. The altered phenology of coppiced stems may have triggered leaf beetle aggregation in refuges and migration from stands without refuges. A behavioural response to resource concentration in retained old patches likely transformed the predator refuge from a ‘source' to a ‘sink'.
5. Synthesis and applications. This study shows that retaining refuges in willow short-rotation coppice to facilitate predator population recovery after harvest can come at the cost of more attractive herbivore habitats - and thus increased pest problems. We conclude that crop refuges in systems with intermediate disturbance regimes pose new challenges for conservation biological control, in particular the need to consider how patch age affects dispersal and recolonization of both pest and predators
How far away is the next basket of eggs? Spatial memory and perceived cues shape aggregation patterns in a leaf beetle
Gregarious organisms need to handle the trade-off between increasing food competition and the positive effects of group living, and this is particularly important for ovipositing females. We hypothesized that insect females consider how many conspecifics previously visited a host plant. In a no-choice assay, we show that the gregarious blue willow leaf beetle (Phratora vulgatissima) laid the most eggs and the largest clutches on plants where a sequence of few individual females was released, compared to plants where one or many different females were repeatedly released. Therefore, this species is more sensitive to the indirectly perceived number of conspecifics than the directly perceived number of eggs on a plant. We further hypothesized that females adjust their own intra-plant egg clutch distribution to that of conspecifics and discovered a new behavioral component, i.e., the modulation of distances between clutches. Females adjusted these distances in ways indicating the use of spatial memory, because the largest distance increases were observed on plants with their own clutches, compared to plants with clutches from conspecifics. However, adjustment of aggregation level and distance between clutches occurred only on a suitable, and not on an unsuitable, Salix genotype. We conclude that both behaviors should reduce competition between sibling and non-sibling larvae
Detectability of landscape effects on recolonization increases with regional population density
Variation in population size over time can influence our ability to identify landscape-moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape-moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8years in 10 willow short-rotation coppice bio-energy stands with a four-year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re-colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape-moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level
Skadegörarna utmanar skogen
Invasiva skadegörare är främmande arter som som hamnat i en ny miljö och därigenom ofta orsakar stor skada. Skadegörare i skog består till största delen av olika insekter och svamp-patogener som orsakar sjukdomar. Introduktionen av invasiva skadegörare till Europas skogar har mer än fördubblats under de senaste 100 åren. De invasiva skadegörarna sprids effektivt via handeln med växter och växtmaterial, men även i förpackningsmaterial, som lastpallar. Svamppatogener introduceras oftast genom import av levande plantor medan skadliga insekter som barkborrar och nematoder oftast transporteras med trä och träprodukter. Den potentiella kostnaden orsakade av invasiva skadegörare är enorm. Att hantera almsjukan, en patogen som påverkat ett trädslag med liten utbredning i Sverige, har uppskattats kosta 20-54 miljoner kronor per år. Inkluderas värdeförluster ökar kostnaden med upp till 37 gånger! Skulle de dominerande trädslagen gran eller tall hotas av en invasiv art på liknande sätt som almen skulle kostnaderna snabbt kunna blir mycket stora. Dessutom går stora värden i kulturlandskapet och i biologisk mångfald förlorade
Interacting effects of insect and ungulate herbivory on Scots pine growth
Most plants are subjected to damage from multiple species of herbivores, and the combined impact on plant growth can be non-additive. Since plant response to herbivores tends to be species specific, and change with repeated damage, the outcome likely depend on the sequence and number of attacks. There is a high likelihood of non-additive effects on plant growth by damage from mammals and insects, as mammalian herbivory can alter insect herbivore damage levels, yet few studies have explored this. We report the growth response of young Scots pine trees to sequential mammal and insect herbivory, varying the sequence and number of damage events, using an ungulate-pine-sawfly system. Combined sawfly and ungulate herbivory had both additive and non-additive effects on pine growth-the growth response depended on the combination of ungulate browsing and sawfly defoliation (significant interaction effect). Repeated sawfly herbivory reduced growth (compared to single defoliation) on un-browsed trees. However, on browsed trees, depending on when sawfly defoliation was combined with browsing, trees exposed to repeated sawfly herbivory had both higher, lower and the same growth as trees exposed to a single defoliation event. We conclude that the sequence of attacks by multiple herbivores determine plant growth response
Regulation of forest defoliating insects through small mammal predation
Population densities of forest defoliating insects may be regulated by small mammal predation on the pupae. When outbreaks do occur, they often coincide with warm, dry weather and at barren forest sites. A proposed reason for this is that weather and habitat affect small mammal population density (numerical response) and hence pupal predation. We propose an alternative explanation: weather and habitat affect small mammal feeding behaviour (functional response) and hence the outbreak risks of forest pest insects. We report results from laboratory and field-enclosure experiments estimating rates of pupal predation by bank voles (Myodes glareolus) on an outbreak insect, the European pine sawfly (Neodiprion sertifer), at different temperatures (15 and 20 A degrees C), in different microhabitats (sheltered and non-sheltered), and with or without access to alternative food (sunflower seeds). We found that the probability of a single pupa being eaten at 20 A degrees C was lower than at 15 A degrees C (0.49 and 0.72, respectively). Pupal predation was higher in the sheltered microhabitat than in the open one, and the behaviour of the voles differed between microhabitats. More pupae were eaten in situ in the sheltered microhabitat whereas in the open area more pupae were removed and eaten elsewhere. Access to alternative food did not affect pupal predation. The results suggest that predation rates on pine sawfly pupae by voles are influenced by temperature- and habitat-induced variation in the physiology and behaviour of the predator, and not necessarily solely through effects on predator densities as previously proposed
Seasonal timing and recurrence of methyl jasmonate treatment influence pine weevil damage to Norway spruce seedlings
Defense can be induced in conifer seedlings to reduce pine weevil (Hylobius abietis) damage, by treatment with the plant hormone methyl jasmonate (MJ). Few studies have addressed important practical issues regarding the use of MJ such as treatment incidence and timing, seedling age and its compatibility with plant nursery practices. We examined if levels of pine weevil damage depend on seasonal timing and recurrence of MJ treatment, and if the observed effects depend on plant age. Norway spruce (Picea abies) seedlings from two age cohorts (1 year and 1.5 years old) received four MJ treatments: MJ application before winter storage in the previous year, after winter storage but before spring/summer planting, repeated MJ application (both before winter storage, and before planting) or no MJ application at all. Pine weevil damage was evaluated in a lab and field experiment. We found that the timing and recurrence of MJ treatment affected the amount of damage inflicted by pine weevils in different ways, but these effects were consistent among age cohorts. MJ application before winter storage provided the most effective protection, and this reduction in damage was comparable to that provided by a currently used physical protection method against pine weevil feeding. Our results indicated that MJ can be applied in line with nursery practices (before winter storage) and provides adequate protection for two growing seasons
Synergistic effects of methyl jasmonate treatment and propagation method on Norway spruce resistance against a bark-feeding insect
Utilizing plants with enhanced resistance traits is gaining interest in plant protection. Two strategies are especially promising for increasing resistance against a forest insect pest, the pine weevil (Hylobius abietis): exogenous application of the plant defense hormone methyl jasmonate (MeJA), and production of plants through the clonal propagation method somatic embryogenesis (SE). Here, we quantified and compared the separate and combined effects of SE and MeJA on Norway spruce resistance to pine weevil damage. Plants produced via SE (emblings) and nursery seedlings (containerized and bare-root), were treated (or not) with MeJA and exposed to pine weevils in the field (followed for 3 years) and in the lab (with a non-choice experiment). Firstly, we found that SE and MeJA independently decreased pine weevil damage to Norway spruce plants in the field by 32-33% and 53-59%, respectively, compared to untreated containerized and bare-root seedlings. Secondly, SE and MeJA together reduced damage to an even greater extent, with treated emblings receiving 86-87% less damage when compared to either untreated containerized or bare-root seedlings in the field, and by 48% in the lab. Moreover, MeJA-treated emblings experienced 98% lower mortality than untreated containerized seedlings, and this high level of survival was similar to that experienced by treated bare-root seedlings. These positive effects on survival remained for MeJA-treated emblings across the 3-year experimental period. We conclude that SE and MeJA have the potential to work synergistically to improve plants' ability to resist damage, and can thus confer a strong plant protection advantage. The mechanisms underlying these responses merit further examination
Comparing Exogenous Methods to Induce Plant-Resistance Against a Bark-Feeding Insect
Exogenous application of the plant hormone methyl jasmonate (MeJA) can trigger induced plant defenses against herbivores, and has been shown to provide protection against insect herbivory in conifer seedlings. Other methods, such as mechanical damage to seedlings, can also induce plant defenses, yet few have been compared to MeJA and most studies lack subsequent herbivory feeding tests. We conducted two lab experiments to: (1) compare the efficacy of MeJA to mechanical damage treatments that could also induce seedling resistance, (2) examine if subsequent insect damage differs depending on the time since induction treatments occurred, and (3) assess if these induction methods affect plant growth. We compared Scots pine (Pinus sylvestris) seedlings sprayed with MeJA (10 or 15 mM) to seedlings subjected to four different mechanical bark damage treatments (two different bark wound sizes, needle-piercing damage, root damage) and previous pine weevil (Hylobius abietis) damage as a reference treatment. The seedlings were exposed to pine weevils 12 or 32 days after treatments (early and late exposure, hereafter), and resistance was measured as the amount of damage received by plants. At early exposure, seedlings treated with needle-piercing damage received significantly more subsequent pine weevil feeding damage than those treated with MeJA. Seedlings treated with MeJA and needle-piercing damage received 84% less and 250% more pine weevil feeding, respectively, relative to control seedlings. The other treatments did not differ statistically from control or MeJA in terms of subsequent pine weevil damage. For the late exposure group, plants in all induction treatments tended to receive less pine weevil feeding (yet this was not statistically significant) compared to control seedlings. On the other hand, MeJA significantly slowed down seedling growth relative to control and all other induction treatments. Overall, the mechanical damage treatments appeared to have no or variable effects on seedling resistance. One of the treatments, needle-piercing damage, actually increased pine weevil feeding at early exposure. These results therefore suggest that mechanical damage shows little potential as a plant protection measure to reduce feeding by a bark-chewing insect
- …