63 research outputs found

    Transient complete heart block following catheter ablation of a left lateral accessory pathway.

    Get PDF
    A 16-year-old female with symptomatic Wolff-Parkinson-White (WPW) syndrome underwent catheter ablation of a left-sided lateral accessory pathway. The accessory pathway was eliminated with the first ablation lesion; however, the patient immediately developed complete heart block (CHB). At first, complete heart block was thought to be due to ablation of left atrial extension of the AV node, and pacemaker therapy was considered. However, careful ECG analysis revealed that the development of CHB was in fact due to bump injury to the AV node during transseptal catheterization. Conservative management allowed resolution of AV nodal conduction without need for a permanent pacemaker

    Ventricular Arrhythmia Discriminator Programming and the Impact on the Incidence of Inappropriate Therapy in Patients with Implantable Cardiac Defibrillators

    Get PDF
    Background: The incidence of inappropriate therapy from implantable cardioverter defibrillators (ICDs) has been reduced by programming ventricular arrhythmia discriminators (VAD) on at the time of implant. Objective: To determine which VAD is most effective in preventing inappropriate therapy.Methods and Results: Dual chamber ICD (n=48) or cardiac resynchronization therapy defibrillator (CRT-D) (n=55) implantation was performed in 103 patients (M=94, F=9). Patients were followed prospectively for therapy events (shock or anti-tachycardia pacing) for a mean 362±289 days. Events were correlated with clinical characteristics and VAD programming. Of the 103 pts followed, 11 received inappropriate therapy (IT), 15 received appropriate therapy (AT), and 77 received no therapy (NT). In the AT and IT groups, a total of 207 events (ATP=171, shock=36) were observed. A total of sixty-four electrograms (EGMs) were analyzed. Programming VADs "ON" versus "OFF" reduced the incidence of IT events compared to those receiving AT or NT events (p<.01), with a trend in fewer patients receiving IT (31.3% "ON" vs 55.6% "OFF", p = 0.131). Programming atrial fibrillation (AF) detection ON resulted in fewer patients receiving IT compared to those receiving AT or NT (3.6% vs 19%, p<.05). Furthermore, programming AF or AFL algorithms "ON", resulted in overall fewer episodes of IT therapy (p<.01). Conclusions: AF or AFL discriminators significantly reduced the incidence of IT, and were predominantly responsible for the benefits from VAD programming observed in this study. Activating these features as part of routine ICD or CRT-D programming may provide a simple and effective alternative to the use of more complex and multiple VAD strategies

    Assessment of Metabolic Phenotypes in Patients with Non-ischemic Dilated Cardiomyopathy Undergoing Cardiac Resynchronization Therapy

    Get PDF
    Studies of myocardial metabolism have reported that contractile performance at a given myocardial oxygen consumption (MVO2) can be lower when the heart is oxidizing fatty acids rather than glucose or lactate. The objective of this study is to assess the prognostic value of myocardial metabolic phenotypes in identifying non-responders among non-ischemic dilated cardiomyopathy (NIDCM) patients undergoing cardiac resynchronization therapy (CRT). Arterial and coronary sinus plasma concentrations of oxygen, glucose, lactate, pyruvate, free fatty acids (FFA), and 22 amino acids were obtained from 19 male and 2 female patients (mean age 56 ± 16) with NIDCM undergoing CRT. Metabolite fluxes/MVO2 and extraction fractions were calculated. Flux balance analysis (FBA) was performed with MetaFluxNet 1.8 on a metabolic network of the cardiac mitochondria (189 reactions, 230 metabolites) reconstructed from mitochondrial proteomic data (615 proteins) from human heart tissue. Non-responders based on left ventricular ejection fraction (LVEF) demonstrated a greater mean FFA extraction fraction (35% ± 17%) than responders [18 ± 10%, p = 0.0098, area under the estimated ROC curve (AUC) was 0.8238, S.E. 0.1115]. Calculated adenosine triphosphate (ATP)/MVO2 using FBA correlated with change in New York Heart Association (NYHA) class (rho = 0.63, p = 0.0298; AUC = 0.8381, S.E. 0.1316). Non-responders based on both LVEF and NYHA demonstrated a greater mean FFA uptake/MVO2 (0.115 ± 0.112) than responders (0.034 ± 0.030, p = 0.0171; AUC = 0.8593, S.E. 0.0965). Myocardial FFA flux and calculated maximal ATP synthesis flux using FBA may be helpful as biomarkers in identifying non-responders among NIDCM patients undergoing CRT

    Imaging and Modeling of Myocardial Metabolism

    Get PDF
    Current imaging methods have focused on evaluation of myocardial anatomy and function. However, since myocardial metabolism and function are interrelated, metabolic myocardial imaging techniques, such as positron emission tomography, single photon emission tomography, and magnetic resonance spectroscopy present novel opportunities for probing myocardial pathology and developing new therapeutic approaches. Potential clinical applications of metabolic imaging include hypertensive and ischemic heart disease, heart failure, cardiac transplantation, as well as cardiomyopathies. Furthermore, response to therapeutic intervention can be monitored using metabolic imaging. Analysis of metabolic data in the past has been limited, focusing primarily on isolated metabolites. Models of myocardial metabolism, however, such as the oxygen transport and cellular energetics model and constraint-based metabolic network modeling, offer opportunities for evaluation interactions between greater numbers of metabolites in the heart. In this review, the roles of metabolic myocardial imaging and analysis of metabolic data using modeling methods for expanding our understanding of cardiac pathology are discussed
    corecore