14 research outputs found

    What agricultural practices are most likely to deliver ‘sustainable intensification’ in the UK?

    Get PDF
    Sustainable intensification is a process by which agricultural productivity is enhanced whilst also creating environmental and social benefits. We aimed to identify practices likely to deliver sustainable intensification, currently available for UK farms but not yet widely adopted. We compiled a list of 18 farm management practices with the greatest potential to deliver sustainable intensification in the UK, following a well-developed stepwise methodology for identifying priority solutions, using a group decision-making technique with key agricultural experts. The list of priority management practices can provide the focal point of efforts to achieve sustainable intensification of agriculture, as the UK develops post-Brexit agricultural policy, and pursues the second Sustainable Development Goal, which aims to end hunger and promote sustainable agriculture. The practices largely reflect a technological, production-focused view of sustainable intensification, including for example, precision farming and animal health diagnostics, with less emphasis on the social and environmental aspects of sustainability. However, they do reflect an integrated approach to farming, covering many different aspects, from business organization and planning, to soil and crop management, to landscape and nature conservation. For a subset of ten of the priority practices, we gathered data on the level of existing uptake in English and Welsh farms through a stratified survey in seven focal regions. We find substantial existing uptake of most of the priority practices, indicating that UK farming is an innovative sector. The data identify two specific practices for which uptake is relatively low, but which some UK farmers find appealing and would consider adopting. These practices are: prediction of pest and disease outbreaks, especially for livestock farms; staff training on environmental issues, especially on arable farms

    A comparison of soil microbial community structure, protozoa and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiensis CryIAb toxin

    No full text
    International audienceField trials were established at three European sites (Denmark, Eastern France, SouthWest France) of genetically modified maize (Zea mays L.) expressing the CryIAb Bacillus thuringiensis toxin (Bt), the nearisogenic non-Bt cultivar, another conventional maize cultivar and grass. Soil from Denmark was sampled at sowing (May) and harvest (October) over two years (2002, 2003); from E France at harvest 2002, sowing and harvest 2003; and from SW France at sowing and harvest 2003. Samples were analysed for microbial community structure (2003 samples only) by community-level physiological-profiling (CLPP) and phospholipid fatty acid analysis (PLFA), and protozoa and nematodes in all samples. Individual differences within a site resulted from: greater nematode numbers under grass than maize on three occasions; different nematode populations under the conventional maize cultivars once; and two occasions when there was a reduced protozoan population under Bt maize compared to non-Bt maize. Microbial community structure within the sites only varied with grass compared to maize, with one occurrence of CLPP varying between maize cultivars (Bt versus a conventional cultivar). An overall comparison of Bt versus non-Bt maize across all three sites only revealed differences for nematodes, with a smaller population under the Bt maize. Nematode community structure was different at each site and the Bt effect was not confined to specific nematode taxa. The effect of the Bt maize was small and within the normal variation expected in these agricultural systems

    Assessing environmental impacts of genetically modified plants on non-target organisms : The relevance of in planta studies

    No full text
    In legal frameworks worldwide, genetically modified plants (GMPs) are subjected to pre-market environmental risk assessment (ERA) with the aim of identifying potential effects on the environment. In the European Union, the EFSA Guidance Document introduces the rationale that GMPs, as well as their newly produced metabolites, represent the potential stressor to be evaluated during ERA. As a consequence, during several phases of ERA for cultivation purposes, it is considered necessary to use whole plants or plant parts in experimental protocols. The importance of in planta studies as a strategy to address impacts of GMPs on non-target organisms is demonstrated, to evaluate both effects due to the intended modification in plant phenotype (e.g. expression of Cry proteins) and effects due to unintended modifications in plant phenotype resulting from the transformation process (e.g. due to somaclonal variations or pleiotropic effects). In planta tests are also necessary for GMPs in which newly expressed metabolites cannot easily be studied in vitro. This paper reviews the scientific literature supporting the choice of in planta studies as a fundamental tool in ERA of GMPs in cultivation dossiers; the evidence indicates they can realistically mimic the ecological relationships occurring in their receiving environments and provide important insights into the biology and sustainable management of GMPs
    corecore