1,103 research outputs found

    Energy spectra of elements with 18 or = Z or = 28 between 10 and 300 GeV/amu

    Get PDF
    The HEAO-3 Heavy Nuclei Experiment is composed of ionization chambers above and below a plastic Cerenkov counter. The energy dependence of the abundances of elements with atomic number, Z, between 18 and 28 at very high energies where they are rare and thus need the large area x time are measured. The measurements of the Danish-French HEAO-3 experiment (Englemann,, et al., 1983) are extended to higher energies, using the relativistic rise of ionization signal as a measure of energy. Source abundances for Ar and Ca were determined

    Cosmic-Ray Spectra in Interstellar Space

    Get PDF
    At energies below ~300 MeV/nuc our knowledge of cosmic-ray spectra outside the heliosphere is obscured by the energy loss that cosmic rays experience during transport through the heliosphere into the inner solar system. This paper compares measurements of secondary electron-capture isotope abundances and cosmic-ray spectra from ACE with a simple model of interstellar propagation and solar modulation in order to place limits on the range of interstellar spectra that are compatible with both sets of data

    UHCR: A Cosmic Ray Mission to Study Nuclei in the Charge Range From 20 ≤Z ≤100

    Get PDF
    A definitive study of the elemental abundances of nuclei over the charge range of 20 ≤ Z ≤ 100 requires a satellite mission capable of obtaining high statistics and excellent charge resolution over the full charge range. Such a mission, utilizing an electronic instrument which is an evolution of the HEA0-3 Heavy Nuclei Experiment, is described here

    Interactions of heavy nuclei, Kr, Xe and Ho, in light targets

    Get PDF
    Over the past few years, the HEAO-3 measurements of the abundances of ultra-heavy cosmic ray nuclei (Z 26) at earth have been analyzed. In order to interpret these abundances in terms of a source composition, allowance must be made for the propagation of the nuclei in the interstellar medium. Vital to any calculation of the propagation is a knowlege of the total and partial interaction cross sections for these heavy nuclei on hydrogen. Until recently, data on such reactions have been scarce. However, now that relativistic heavy ion beams are available at the LBL Bevalac, some of the cross sections of interest can be measured at energies close to those of the cosmic ray nuclei being observed. During a recent calibration at the Bevalac of an array similar to the HEAO-C3 UH-nuclei detector, targets of raphite (C), polyethylene (CH2), and aluminum were exposed to five heavy ion beams ranging in charge (Z) from 36 to 92. Total and partial charge changing cross sections for the various beam nuclei on hydrogen can be determined from the measured cross sections on C and CH2, and will be applied to the propagation problem. The cross sections on Al can be used to correct the abundances of UH cosmic rays observed in the HEAO C-3 detector for interactions in the detector itself

    On the Low Energy Decrease in Galactic Cosmic Ray Secondary/Primary Ratios

    Get PDF
    Galactic cosmic ray (GCR) secondary/primary ratios such as B/C and (Sc+Ti+V)/Fe are commonly used to determine the mean amount of interstellar material through which cosmic rays travel before escaping from the Galaxy (Λ_(esc)). These ratios are observed to be energy-dependent, with a relative maximum at ~1 GeV/nucleon, implying a corresponding peak in Λ_(esc). The decrease in Λ_(esc) at energies above 1 GeV/nucleon is commonly taken to indicate that higher energy cosmic rays escape more easily from the Galaxy. The decrease in Λ_(esc) at energies <1 GeV/nuc is more controversial; suggested possibilities include the effects of a galactic wind or the effects of distributed acceleration of cosmic rays as they pass through the interstellar medium. We consider two possible explanations for the low energy decrease in Λ_(esc) and attempt to fit the combined, high-resolution measurements of secondary/primary ratios from ~0.1 to 35 GeV/nuc made with the CRIS instrument on ACE and the C2 experiment on HEAO-3. The first possibility, which hypothesizes an additional, local component of low-energy cosmic rays that has passed through very little material, is found to have difficulty simultaneously accounting for the abundance of both B and the Fe-secondaries. The second possibility, suggested by Soutoul and Ptuskin, involves a new form for Λ_(esc) motivated by their diffusion-convection model of cosmic rays in the Galaxy. Their suggested form for Λ_(esc)(E) is found to provide an excellent fit to the combined ACE and HEAO data sets

    The Phosphorus/Sulfur Abundance Ratio as a Test of Galactic Cosmic-Ray Source Models

    Get PDF
    Galactic cosmic-ray (GCR) elemental abundances display a fractionation compared to solar-system values that appears ordered by atomic properties such as the first ionization potential (FIP) or condensation temperature (volatility). Determining which parameter controls the observed fractionation is crucial to distinguish between GCR origin models. The Cosmic-Ray Isotope Spectrometer (CRIS) instrument on board NASA's Advanced Composition Explorer (ACE) spacecraft can measure the abundances of several elements that break the general correlation between FIP and volatility (e.g., Na, P, K, Cu, Zn, Ga, and Ge). Phosphorus is a particularly interesting case as it is a refractory (high condensation temperature) element with a FIP value nearly identical to that of its semi-volatile neighbor, sulfur. Using a leaky-box galactic propagation model we find that the P/S and Na/Mg ratios in the GCR source favor volatility as the controlling parameter

    The Abundances of the Heavier Elements in the Cosmic Radiation

    Get PDF
    We review current work on the abundances of the ultraheavy elements in the cosmic radiation, those with Z≳30. Those abundances are compared with predictions based on propagation and fractionation of elemental abundances from various assumed sources of the cosmic rays. We find striking similarities between the solar system and the cosmic ray source abundances for those elements with 32≤Z≤60. For elements with Z≳60, there appears to be a substantial enhancement in the abundances of elements synthesized in the r‐process

    Response of Scintillators to UH Nuclei

    Get PDF
    In order to evaluate the performance of plastic scintillators for the detection of Ultra-Heavy cosmic ray nuclei, as envisaged in paper OG 10.1.14P, we have conducted experiments at the LBL Bevalac in which we exposed NE-114 and acrylic scintillators to beams of 47Ag ions and its interaction fragments. As a result we have calibrated these scintillators over the charge range 31 ≤ Z ≤ 47. Our results show that a combination of Cherenkov and scintillator detectors can resolve individual charges over this charge range. The resolution obtained in scintillator was 0.24 and 0.28 cu for NE-114 and acrylic scintillator respectively. In addition the light emission is shown to be linear to a good approximation with dE/dx over this charge range

    Energy Dependence of the Fragmentation of UH-Nuclei

    Get PDF
    The fragmentation of 10.6 GeV/n Au in CH_2. C, Al, Cu, Sn, and Pb targets has been studied using an array of ion chambers, multi-wire proportional counters (MWPC), and Cherenkov counters. Total charge-changing cross sections were found to be monotonically increasing with target charge over cross sections measured and derived from lower energy data. Partial charge-changing cross sections yielding charge changes less than 1O were depressed from those measured at lower energy

    Anisotropy of Galactic Iron of Energy 30 to 500 GeV/amu Studied by HEAO-3

    Get PDF
    The anisotropy of cosmic ray iron observed by the Heavy Nuclei Experiment [1] on the HEA0-3 spacecraft has been studied. A high rigidity data set was chosen by requiring the Stoermer cutoff be greater than 7 GV, and the energy of individual events was determined by relativistic rise in the ion chamber signal [2]. Events which have estimated rigidity well above their Stoermer cutoff rigidity were chosen in order to reduce the effect of the geomagnetic field on the cosmic ray trajectories. Selecting events with estimated rigidity greater than ~58 GV from eight months of data yields 2459 events. This data set allows an anisotropy measurement with a statistical uncertainty of 3%. We will continue to try increasing the size. of the selected data set while limiting systematic errors due to the geomagnetic and interplanetary fields
    corecore