13,388 research outputs found

    Steady free-surface flow over spatially periodic topography

    Get PDF
    Two-dimensional free-surface flow over a spatially periodic channel bed topography is examined using a steady periodically forced Korteweg-de Vries equation. The existence of new forced solitary-type waves with periodic tails is demonstrated using recently developed non-autonomous dynamical-systems theory. Bound states with two or more co-existing solitary waves are also identified. The solution space for varying amplitude of forcing is explored using a numerical method. A rich bifurcation structure is uncovered and shown to be consistent with an asymptotic theory based on small forcing amplitude..J. Binder, M.G. Blyth and S. Balasuriy

    Kinetics of Phase Separation in Thin Films: Simulations for the Diffusive Case

    Get PDF
    We study the diffusion-driven kinetics of phase separation of a symmetric binary mixture (AB), confined in a thin-film geometry between two parallel walls. We consider cases where (a) both walls preferentially attract the same component (A), and (b) one wall attracts A and the other wall attracts B (with the same strength). We focus on the interplay of phase separation and wetting at the walls, which is referred to as {\it surface-directed spinodal decomposition} (SDSD). The formation of SDSD waves at the two surfaces, with wave-vectors oriented perpendicular to them, often results in a metastable layered state (also referred to as ``stratified morphology''). This state is reminiscent of the situation where the thin film is still in the one-phase region but the surfaces are completely wet, and hence coated with thick wetting layers. This metastable state decays by spinodal fluctuations and crosses over to an asymptotic growth regime characterized by the lateral coarsening of pancake-like domains. These pancakes may or may not be coated by precursors of wetting layers. We use Langevin simulations to study this crossover and the growth kinetics in the asymptotic coarsening regime.Comment: 39 pages, 19 figures, submitted to Phys.Rev.

    Electron-spin beat susceptibility of excitons in semiconductor quantum wells

    Full text link
    Recent time-resolved differential transmission and Faraday rotation measurements of long-lived electron spin coherence in quantum wells displayed intriguing parametric dependencies. For their understanding we formulate a microscopic theory of the optical response of a gas of optically incoherent excitons whose constituent electrons retain spin coherence, under a weak magnetic field applied in the quantum well's plane. We define a spin beat susceptibility and evaluate it in linear order of the exciton density. Our results explain the many-body physics underlying the basic features observed in the experimental measurements

    Spinodal Decomposition in Thin Films: Molecular Dynamics Simulations of a Binary Lennard-Jones Fluid Mixture

    Get PDF
    We use molecular dynamics (MD) to simulate an unstable homogeneous mixture of binary fluids (AB), confined in a slit pore of width DD. The pore walls are assumed to be flat and structureless, and attract one component of the mixture (A) with the same strength. The pair-wise interactions between the particles is modeled by the Lennard-Jones potential, with symmetric parameters that lead to a miscibility gap in the bulk. In the thin-film geometry, an interesting interplay occurs between surface enrichment and phase separation. We study the evolution of a mixture with equal amounts of A and B, which is rendered unstable by a temperature quench. We find that A-rich surface enrichment layers form quickly during the early stages of the evolution, causing a depletion of A in the inner regions of the film. These surface-directed concentration profiles propagate from the walls towards the center of the film, resulting in a transient layered structure. This layered state breaks up into a columnar state, which is characterized by the lateral coarsening of cylindrical domains. The qualitative features of this process resemble results from previous studies of diffusive Ginzburg-Landau-type models [S.~K. Das, S. Puri, J. Horbach, and K. Binder, Phys. Rev. E {\bf 72}, 061603 (2005)], but quantitative aspects differ markedly. The relation to spinodal decomposition in a strictly 2-dd geometry is also discussed.Comment: 37 pages, 11 figures, to appear in Phys. Rev.

    Multiple time scales hidden in heterogeneous dynamics of glass-forming liquids

    Full text link
    A multi-time probing of density fluctuations is introduced to investigate hidden time scales of heterogeneous dynamics in glass-forming liquids. Molecular dynamics simulations for simple glass-forming liquids are performed, and a three-time correlation function is numerically calculated for general time intervals. It is demonstrated that the three-time correlation function is sensitive to the heterogeneous dynamics and that it reveals couplings of correlated motions over a wide range of time scales. Furthermore, the time scale of the heterogeneous dynamics τhetero\tau_{\rm hetero} is determined by the change in the second time interval in the three-time correlation function. The present results show that the time scale of the heterogeneous dynamics τhetero\tau_{\rm hetero} becomes larger than the α\alpha-relaxation time at low temperatures and large wavelengths. We also find a dynamical scaling relation between the time scale τhetero\tau_{\rm hetero} and the length scale ξ\xi of dynamical heterogeneity as τhetero∼ξz\tau_{\rm hetero} \sim \xi^{z} with z=3z=3.Comment: 4 pages, 5 figures, to appear in Phys. Rev. E (Rapid Communications

    Star Polymers Confined in a Nanoslit: A Simulation Test of Scaling and Self-Consistent Field Theories

    Get PDF
    The free energy cost of confining a star polymer where ff flexible polymer chains containing NN monomeric units are tethered to a central unit in a slit with two parallel repulsive walls a distance DD apart is considered, for good solvent conditions. Also the parallel and perpendicular components of the gyration radius of the star polymer, and the monomer density profile across the slit are obtained. Theoretical descriptions via Flory theory and scaling treatments are outlined, and compared to numerical self-consistent field calculations (applying the Scheutjens-Fleer lattice theory) and to Molecular Dynamics results for a bead-spring model. It is shown that Flory theory and self-consistent field (SCF) theory yield the correct scaling of the parallel linear dimension of the star with NN, ff and DD, but cannot be used for estimating the free energy cost reliably. We demonstrate that the same problem occurs already for the confinement of chains in cylindrical tubes. We also briefly discuss the problem of a free or grafted star polymer interacting with a single wall, and show that the dependence of confining force on the functionality of the star is different for a star confined in a nanoslit and a star interacting with a single wall, which is due to the absence of a symmetry plane in the latter case.Comment: 15 pages, 9 figures, LaTeX, to appear in Soft Matte
    • …
    corecore