743 research outputs found

    A subduction-related metasomatically enriched mantle origin for the Luoboling and Zhongliao Cretaceous granitoids from South China: implications for magma evolution and Cu–Mo mineralization

    No full text
    <div><p>The Luoboling granodiorite porphyry and Zhongliao porphyritic biotite-granodiorite occur within the Zijinshan ore field in Fujian Province, southeast China. LA–ICP–MS zircon U–Pb dating yields ages of 103.1 ± 1.1 Ma (2σ, MSWD = 3.1) and 95.9 ± 0.6 Ma (2σ, MSWD = 1.2) for the Luoboling and Zhongliao intrusions, respectively. All rocks show high SiO<sub>2</sub>, K<sub>2</sub>O, and light rare earth element levels, variable CaO and Fe<sub>2</sub>O<sub>3</sub><sup>T</sup>, but low heavy rare earth element and high field strength element (Nb, Ta, Ti) concentrations. They also exhibit uniform initial <sup>87</sup>Sr/<sup>86</sup>Sr ratios (0.7064–0.7068) and ε<sub>Nd</sub>(t) values (−4.0 to −2.6), falling within the compositional field of Cretaceous basalts and mafic dikes in the Cathaysia Block. Together with their relatively high Hf isotopic ratios (ε<sub>Hf</sub>(t) = −5.8 to +0.7), these data suggest that the Luoboling and Zhongliao intrusions were derived from a subduction-enriched mantle source. We infer fractional crystallization processes involving early fractionation of clinopyroxene and olivine, and subsequent fractionation of garnet forming the Luoboling granodiorite porphyry, eventually followed by amphibole- and biotite-dominated crystallization, with minor accessory mineral contribution, producing the (younger) Zhongliao porphyritic biotite-granodiorite. Asthenospheric mantle sources may have also contributed to generating the melts as indicated by initial Pb isotopic compositions and Hf isotopic compositions. The generation of these intrusions was associated with the Pacific subduction in an extensional setting during the Cretaceous.</p></div

    Nature-Inspired One-Step Green Procedure for Enhancing the Antibacterial and Antioxidant Behavior of a Chitin Film: Controlled Interfacial Assembly of Tannic Acid onto a Chitin Film

    No full text
    The final goal of this study was to develop antimicrobial food-contact materials based on a natural phenolic compound (tannic acid) and chitin, which is the second most abundant polysaccharide on earth, using an interfacial assembly approach. Chitin film has poor antibacterial and antioxidant ability, which limits its application in industrial fields such as active packaging. Therefore, in this study, a novel one-step green procedure was applied to introduce antibacterial and antioxidant properties into a chitin film simultaneously by incorporation of tannic acid into the chitin film through interfacial assembly. The antibacterial and antioxidant behavior of chitin film has been greatly enhanced. Hydrogen bonds and hydrophobic interaction were found to be the main driving forces for interfacial assembly. Therefore, controlled interfacial assembly of tannic acid onto a chitin film demonstrated a good way to develop functional materials that can be potentially applied in industry

    Additional file 2: Table S1. of The genetic variants in 3’ untranslated region of voltage-gated sodium channel alpha 1 subunit gene affect the mRNA-microRNA interactions and associate with epilepsy

    No full text
    Genetic variants and alleles in 3'UTR of SCN1A_v001 of male patients and controls (in *.ped file); Table S2. genetic variants and alleles in 3'UTR of SCN1A_v001 of female patients and controls (in *.ped file); Table S3. genetic variants in 3'UTR-SCN1A found in study subjects and their locations (in *.info file); Table S4. Fisher’s exact test on rare genetic variants for case/control association study; Table S5. 50 most expressed miRNA in four parts of CNS; Table S6. STarMir parameters of predicted miRNA-binding sites of 3’UTR of SCN1A gene in genotype groups; Table S7. the frequently lost and compensatory sites for the alteration in conserved sites of miRNAs binding of 3’UTR-SCN1A in genotype groups. Table S8. the conserved sites of miRNA binding in wild type 3’UTR-SCN1A. Table S9. the comparison of STarMir parameters between males and females. “S0”-“S14.txt” were the working input files for STarMir analysis. S0. wild type (reference) 3’UTR sequence; S1. male CTTTA haplotype 3’UTR sequence; S2. male CTCTA haplotype 3’UTR sequence; S3. male CCTTA haplotype 3’UTR sequence; S4. male TTTTA haplotype 3’UTR sequence; S5. female CTTAACA haplotype 3’UTR sequence; S6. female TTCAACA haplotype 3’UTR sequence; S7. female TTTAACA 3’UTR sequence; S8. female 6568_6571del 3’UTR sequence; S9. female 7338_7344del 3’UTR sequence; S10. female 7065_7066insG 3’UTR sequence; S11. 50 microRNAs expressed in human hippocampus; S12. 50 microRNAs expressed in human frontal cortex; S13. 50 microRNAs expressed in human cerebellum; S14. 50 microRNAs expressed in human midbrain. (ZIP 403 kb

    Review of Alkali-Based Pretreatment To Enhance Enzymatic Saccharification for Lignocellulosic Biomass Conversion

    No full text
    Lignocelluloses have been the focus of much attention, because of their conversion to fermentable sugars for cellulosic ethanol production, both from the viewpoint of energy and the environment. Pretreatment plays a crucial rule in biomass conversion, to overcome the chemical and structural difficulties, which have evolved in lignocelluloses, and to produce a cost-effective fermentable sugar via enzymatic saccharification. Among the developed pretreatment approaches, alkali-based pretreatment technology, which can utilize the equipment and chemical recovery system in the pulping industry, has been considered one of the most promising pretreatment methods, mainly because of its high efficiency in delignification and high final total sugar yields. This paper reviews the classification, mechanism, advantages, disadvantages, and the progress of alkali-based pretreatment technologies, in order to better understand the fundamental principles of alkali-based pretreatments. This is of vital importance for the process improvement and commercial production of alkali-based pretreatment for producing cellulosic ethanol

    Pretreatment of Corn Stover with the Modified Hydrotropic Method To Enhance Enzymatic Hydrolysis

    No full text
    Hydrotropic pretreatment using sodium xylene sulfonate (SXS) could remove lignin and xylan from corn stover to enhance enzymatic saccharification. Peracetic acid (PAA) treatment prior to the hydrotropic process [so-called modified hydrotropic pretreatment (MHP)] could double the delignification efficiency and remarkably increase glucan conversion. After pretreatment, samples were treated by PFI refining for comparison. With the supplement of PFI refining before enzymatic hydrolysis of the MHP-treated corn stover, 87.6% of the glucan yield could be achieved and the corresponding xylan yield was 43.7%. In addition, the pretreated corn stover was analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), and scanning electron microscopy (SEM). The lignin precipitate from the spend liquor was also investigated by FTIR. The cleavage of the lignin structure could be observed from FTIR results. The crystallinity index (CrI) of corn stover after MHP was increased according to XRD analysis, while the reduction of total CrI of cellulose between pretreatment samples was analyzed by FTIR. SEM analysis demonstrated that PAA treatment affected the morphology of corn stover fiber by generating pores and allowing for better contact of the enzyme to polysaccharides

    Synthesis of Cinnolines and Cinnolinium Salt Derivatives by Rh(III)-Catalyzed Cascade Oxidative Coupling/Cyclization Reactions

    No full text
    A novel method for the synthesis of cinnolines and cinnolinium salt derivatives via Rh­(III)-catalyzed cascade oxidative coupling/cyclization reaction from Boc-arylhydrazines and alkynes has been developed. The reactions have a broad substrate scope and high stereoselectivity with readily available starting materials and provides an efficient synthetic route for this kind of compounds. A catalytically competent five-membered rhodacycle has been isolated, thus revealing a key intermediate in the catalytic cycle

    Least-squares fits of velocity distribution function to measured data.

    No full text
    <p>Least-squares fits of velocity distribution function to measured data.</p

    MicroRNA-153 Inhibits Osteosarcoma Cells Proliferation and Invasion by Targeting TGF-β2

    No full text
    <div><p>Increasing evidence indicates that microRNAs (miRNAs), a class of small noncoding RNAs, participate in almost every step of cellular processes. MiRNAs are aberrantly expressed in human cancers and contribute to cancer development and progression. Study of miRNAs may provide a new clue for understanding the mechanism of carcinogenesis and a new tool for cancer treatment. In the present study, miR-153 was downregulated in human osteosarcoma tissues and cell lines. Introduction of miR-153 mimics into the MG-63 cells inhibited cell proliferation and invasion. Our results further revealed that transforming growth factor beta 2 (TGF-β2) was negatively regulated by miR-153. Furthermore, overexpression of miR-153 decreased p-SMAD2, p-SMAD3, epidermal growth factor receptor (EGFR) and insulin-like growth factor binding protein-3 (IGFBP-3) expressions, which were the downstream signaling molecules of TGF-β. Furthermore, miRNA-153 suppressed TGF-β-mediated MG-63 proliferation and migration. Therefore, our results suggest that miR-153 may act as a tumor suppressor in osteosarcoma through targeting TGF-β2.</p></div

    Evaluation of Intestinal Drug Absorption and Interaction Using Quadruple Single-Pass Intestinal Perfusion Coupled with Mass Spectrometry Imaging

    No full text
    Visualization and characterization of the intestinal membrane transporter-mediated drug absorption and interaction are challenging due to the complex physical and chemical environment. In this work, an integrated strategy was developed for in situ visualization and assessment of the drug absorption and interaction in rat intestines using quadruple single-pass intestinal perfusion (Q-SPIP) technique coupled with matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI). Compared with the traditional SPIP only available for perfusion of one single intestinal segment, the Q-SPIP model can simultaneously perfuse four individual segments of each rat intestine (duodenum, jejunum, ileum, and colon), enabling to obtain rich data from one rat. Subsequently, the drug distribution and absorption in rat intestinal tissue were accurately visualized by using an optimized MALDI MSI approach. The utility and versatility of this strategy were demonstrated via the examination of P-glycoprotein (P-gp)-mediated intestinal absorption of berberine (BBR) and its combination with natural products possessing inhibitory potency against P-gp. The change in the spatial distribution of BBR was resolved, and MALDI results showed that the signal intensity of BBR in defined regions was enhanced following coperfusion with P-gp inhibitors. However, enhanced absorption of BBR after coperfusion with the P-gp inhibitor was not observed in the ulcerative colitis rat model, which may be due to the damage to the intestinal barrier. This study exemplifies the availability and utility of Q-SPIP coupled with MALDI MSI in the examination of transporter-mediated intestinal drug absorption and interaction for fundamental inquiries into the preclinical prediction of oral absorption and drug interaction potential

    Comparison of one-dimensional velocity distribution at 70% D.

    No full text
    <p>Comparison of one-dimensional velocity distribution at 70% D.</p
    corecore