5 research outputs found

    3D Polyaniline Porous Layer Anchored Pillared Graphene Sheets: Enhanced Interface Joined with High Conductivity for Better Charge Storage Applications

    No full text
    Here, we report synthesis of a 3-dimensional (3D) porous polyaniline (PANI) anchored on pillared graphene (G-PANI-PA) as an efficient charge storage material for supercapacitor applications. Benzoic acid (BA) anchored graphene, having spatially separated graphene layers (G-Bz-COOH), was used as a structure controlling support whereas 3D PANI growth has been achieved by a simple chemical oxidation of aniline in the presence of phytic acid (PA). The BA groups on G-Bz-COOH play a critical role in preventing the restacking of graphene to achieve a high surface area of 472 m<sup>2</sup>/g compared to reduced graphene oxide (RGO, 290 m<sup>2</sup>/g). The carboxylic acid (−COOH) group controls the rate of polymerization to achieve a compact polymer structure with micropores whereas the chelating nature of PA plays a crucial role to achieve the 3D growth pattern of PANI. This type of controlled interplay helps G-PANI-PA to achieve a high conductivity of 3.74 S/cm all the while maintaining a high surface area of 330 m<sup>2</sup>/g compared to PANI-PA (0.4 S/cm and 60 m<sup>2</sup>/g). G-PANI-PA thus conceives the characteristics required for facile charge mobility during fast charge–discharge cycles, which results in a high specific capacitance of 652 F/g for the composite. Owing to the high surface area along with high conductivity, G-PANI-PA displays a stable specific capacitance of 547 F/g even with a high mass loading of 3 mg/cm<sup>2</sup>, an enhanced areal capacitance of 1.52 F/cm<sup>2</sup>, and a volumetric capacitance of 122 F/cm<sup>3</sup>. The reduced charge-transfer resistance (RCT) of 0.67 Ω displayed by G-PANI-PA compared to pure PANI (0.79 Ω) stands out as valid evidence of the improved charge mobility achieved by the system by growing the 3D PANI layer along the spatially separated layers of the graphene sheets. The low RCT helps the system to display capacitance retention as high as 65% even under a high current dragging condition of 10 A/g. High charge/discharge rates and good cycling stability are the other highlights of the supercapacitor system derived from this composite material

    Coherent Fusion of Water Array and Protonated Amine in a Metal–Sulfate-Based Coordination Polymer for Proton Conduction

    No full text
    A new function of metal–sulfate-based coordination polymer (CP) for proton conduction was investigated through rational integration of a continuous water array and protonated amine in the coordination space of the CP. The H-bonded arrays of water molecules along with nitrogen-rich aromatic cation (protonated melamine) facilitate proton conduction in the compound under humid conditions. Although several reports of metal–oxalate/phosphate-based CPs showing proton conduction are known, this is the first designed synthesis of a metal–sulfate-based CP bearing water arrays functioning as a solid-state proton conductor

    High-Performance Flexible Solid-State Supercapacitor with an Extended Nanoregime Interface through in Situ Polymer Electrolyte Generation

    No full text
    Here, we report an efficient strategy by which a significantly enhanced electrode–electrolyte interface in an electrode for supercapacitor application could be accomplished by allowing in situ polymer gel electrolyte generation inside the nanopores of the electrodes. This unique and highly efficient strategy could be conceived by judiciously maintaining ultraviolet-triggered polymerization of a monomer mixture in the presence of a high-surface-area porous carbon. The method is very simple and scalable, and a prototype, flexible solid-state supercapacitor could even be demonstrated in an encapsulation-free condition by using the commercial-grade electrodes (thickness = 150 μm, area = 12 cm<sup>2</sup>, and mass loading = 7.3 mg/cm<sup>2</sup>). This prototype device shows a capacitance of 130 F/g at a substantially reduced internal resistance of 0.5 Ω and a high capacitance retention of 84% after 32000 cycles. The present system is found to be clearly outperforming a similar system derived by using the conventional polymer electrolyte (PVA–H<sub>3</sub>PO<sub>4</sub> as the electrolyte), which could display a capacitance of only 95 F/g, and this value falls to nearly 50% in just 5000 cycles. The superior performance in the present case is credited primarily to the excellent interface formation of the in situ generated polymer electrolyte inside the nanopores of the electrode. Further, the interpenetrated nature of the polymer also helps the device to show a low electron spin resonance and power rate and, most importantly, excellent shelf-life in the unsealed flexible conditions. Because the nature of the electrode–electrolyte interface is the major performance-determining factor in the case of many electrochemical energy storage/conversion systems, along with the supercapacitors, the developed process can also find applications in preparing electrodes for the devices such as lithium-ion batteries, metal–air batteries, polymer electrolyte membrane fuel cells, etc

    Design of a High Performance Thin All-Solid-State Supercapacitor Mimicking the Active Interface of Its Liquid-State Counterpart

    No full text
    Here we report an all-solid-state supercapacitor (ASSP) which closely mimics the electrode–electrolyte interface of its liquid-state counterpart by impregnating polyaniline (PANI)-coated carbon paper with polyvinyl alcohol-H<sub>2</sub>SO<sub>4</sub> (PVA-H<sub>2</sub>SO<sub>4</sub>) gel/plasticized polymer electrolyte. The well penetrated PVA-H<sub>2</sub>SO<sub>4</sub> network along the porous carbon matrix essentially enhanced the electrode–electrolyte interface of the resulting device with a very low equivalent series resistance (ESR) of 1 Ω/cm<sup>2</sup> and established an interfacial structure very similar to a liquid electrolyte. The designed interface of the device was confirmed by cross-sectional elemental mapping and scanning electron microscopy (SEM) images. The PANI in the device displayed a specific capacitance of 647 F/g with an areal capacitance of 1 F/cm<sup>2</sup> at 0.5 A/g and a capacitance retention of 62% at 20 A/g. The above values are the highest among those reported for any solid-state-supercapacitor. The whole device, including the electrolyte, shows a capacitance of 12 F/g with a significantly low leakage current of 16 μA<sup>2</sup>. Apart from this, the device showed excellent stability for 10000 cycles with a coulombic efficiency of 100%. Energy density of the PANI in the device is 14.3 Wh/kg

    Pt- and TCO-Free Flexible Cathode for DSSC from Highly Conducting and Flexible PEDOT Paper Prepared via in Situ Interfacial Polymerization

    No full text
    Here, we report the preparation of a flexible, free-standing, Pt- and TCO-free counter electrode in dye-sensitized solar cell (DSSC)-derived from polyethylenedioxythiophene (PEDOT)-impregnated cellulose paper. The synthetic strategy of making the thin flexible PEDOT paper is simple and scalable, which can be achieved via in situ polymerization all through a roll coating technique. The very low sheet resistance (4 Ω/□) obtained from a film of 40 μm thick PEDOT paper (PEDOT-p-5) is found to be superior to the conventional fluorine-doped tin oxide (FTO) substrate. The high conductivity (357 S/cm) displayed by PEDOT-p-5 is observed to be stable under ambient conditions as well as flexible and bending conditions. With all of these features in place, we could develop an efficient Pt- and TCO-free flexible counter electrode from PEDOT-p-5 for DSSC applications. The catalytic activity toward the tri-iodide reduction of the flexible electrode is analyzed by adopting various electrochemical methodologies. PEDOT-p-5 is found to display higher exchange current density (7.12 mA/cm<sup>2</sup>) and low charge transfer resistance (4.6 Ω) compared to the benchmark Pt-coated FTO glass (2.40 mA/cm<sup>2</sup> and 9.4 Ω, respectively). Further, a DSSC fabricated using PEDOT-p-5 as the counter electrode displays a comparable efficiency of 6.1% relative to 6.9% delivered by a system based on Pt/FTO as the counter electrode
    corecore