5 research outputs found

    A sugarcane mosaic virus vector for rapid in planta screening of proteins that inhibit the growth of insect herbivores

    Get PDF
    Spodoptera frugiperda (fall armyworm) is a notorious pest that threatens maize production worldwide. Current control measures involve the use of chemical insecticides and transgenic maize expressing Bacillus thuringiensis (Bt) toxins. Although additional transgenes have confirmed insecticidal activity, limited research has been conducted in maize, at least partially due to the technical difficulty of maize transformation. Here, we describe implementation of a sugarcane mosaic virus (SCMV) vector for rapidly testing the efficacy of both endogenous maize genes and heterologous genes from other organisms for the control of S. frugiperda in maize. Four categories of proteins were tested using the SCMV vector: (i) maize defence signalling proteins: peptide elicitors (Pep1 and Pep3) and jasmonate acid conjugating enzymes (JAR1a and JAR1b); (ii) maize defensive proteins: the previously identified ribosome‐inactivating protein (RIP2) and maize proteinase inhibitor (MPI), and two proteins with predicted but unconfirmed anti‐insect activities, an antimicrobial peptide (AMP) and a lectin (JAC1); (iii) lectins from other plant species: Allium cepa agglutinin (ACA) and Galanthus nivalis agglutinin (GNA); and (iv) scorpion and spider toxins: peptides from Urodacus yaschenkoi (UyCT3 and UyCT5) and Hadronyche versuta (Hvt). In most cases, S. frugiperda larval growth was reduced by transient SCMV‐mediated overexpression of genes encoding these proteins. Additionally, experiments with a subset of the SCMV‐expressed genes showed effectiveness against two aphid species, Rhopalosiphum maidis (corn leaf aphid) and Myzus persicae (green peach aphid). Together, these results demonstrate that SCMV vectors are a rapid screening method for testing the efficacy and insecticidal activity of candidate genes in maize

    Energy budget changes in response to desiccation stress in Tribolium castaneum (Coleoptera: Tenebrionidae)

    No full text
    Humidity is probably the most important abiotic factor influencing life cycles, distribution, survival, and population dynamics of stored product pests. Although most of these pests can complete their life cycles in any given relative humidity, their prolonged development time, as well as decreased emergence rate and fecundity, have been well documented in several previous studies. In the present study, we evaluated the changes in energetic substances (lipids, soluble carbohydrates, glycogen, and proteins) accumulated in different life stages of larvae and adults of Tribolium castaneum in response to different relative humidity levels (5, 12, 22, 30, 45, and 65%). The results showed that young larvae were more susceptible to low relative humidity levels and desiccation stress. Larvae tended to accumulate higher proportions of lipids during earlier stages while their energy content shifted towards proteins with an increase in their age. Adult beetles experienced a significant decrease in their protein content immediately after they initiated reproduction. The importance of these fluctuations in the biology of the red flour beetles was discussed in detail

    A sugarcane mosaic virus vector for rapid in planta screening of proteins that inhibit the growth of insect herbivores

    No full text
    Spodoptera frugiperda (fall armyworm) is a notorious pest that threatens maize production worldwide. Current control measures involve the use of chemical insecticides and transgenic maize expressing Bacillus thuringiensis (Bt) toxins. Although additional transgenes have confirmed insecticidal activity, limited research has been conducted in maize, at least partially due to the technical difficulty of maize transformation. Here, we describe implementation of a sugarcane mosaic virus (SCMV) vector for rapidly testing the efficacy of both endogenous maize genes and heterologous genes from other organisms for the control of S. frugiperda in maize. Four categories of proteins were tested using the SCMV vector: (i) maize defence signalling proteins: peptide elicitors (Pep1 and Pep3) and jasmonate acid conjugating enzymes (JAR1a and JAR1b); (ii) maize defensive proteins: the previously identified ribosome‐inactivating protein (RIP2) and maize proteinase inhibitor (MPI), and two proteins with predicted but unconfirmed anti‐insect activities, an antimicrobial peptide (AMP) and a lectin (JAC1); (iii) lectins from other plant species: Allium cepa agglutinin (ACA) and Galanthus nivalis agglutinin (GNA); and (iv) scorpion and spider toxins: peptides from Urodacus yaschenkoi (UyCT3 and UyCT5) and Hadronyche versuta (Hvt). In most cases, S. frugiperda larval growth was reduced by transient SCMV‐mediated overexpression of genes encoding these proteins. Additionally, experiments with a subset of the SCMV‐expressed genes showed effectiveness against two aphid species, Rhopalosiphum maidis (corn leaf aphid) and Myzus persicae (green peach aphid). Together, these results demonstrate that SCMV vectors are a rapid screening method for testing the efficacy and insecticidal activity of candidate genes in maize.This article is published as Chung, Seung Ho, Mahdiyeh Bigham, Ryan R. Lappe, Barry Chan, Ugrappa Nagalakshmi, Steven A. Whitham, Savithramma P. Dinesh‐Kumar, and Georg Jander. "A sugarcane mosaic virus vector for rapid in planta screening of proteins that inhibit the growth of insect herbivores." Plant Biotechnology Journal (2021). doi:10.1111/pbi.13585.</p

    The insect central complex as model for heterochronic brain development : background, concepts, and tools

    No full text
    The adult insect brain is composed of neuropils present in most taxa. However, the relative size, shape, and developmental timing differ between species. This diversity of adult insect brain morphology has been extensively described while the genetic mechanisms of brain development are studied predominantly in Drosophila melanogaster. However, it has remained enigmatic what cellular and genetic mechanisms underlie the evolution of neuropil diversity or heterochronic development. In this perspective paper, we propose a novel approach to study these questions. We suggest using genome editing to mark homologous neural cells in the fly D. melanogaster, the beetle Tribolium castaneum, and the Mediterranean field cricket Gryllus bimaculatus to investigate developmental differences leading to brain diversification. One interesting aspect is the heterochrony observed in central complex development. Ancestrally, the central complex is formed during embryogenesis (as in Gryllus) but in Drosophila, it arises during late larval and metamorphic stages. In Tribolium, it forms partially during embryogenesis. Finally, we present tools for brain research in Tribolium including 3D reconstruction and immunohistochemistry data of first instar brains and the generation of transgenic brain imaging lines. Further, we characterize reporter lines labeling the mushroom bodies and reflecting the expression of the neuroblast marker gene Tc-asense, respectively.publishe
    corecore