178 research outputs found

    Vibrational Enhancement of the Effective Donor - Acceptor Coupling

    Full text link
    The paper deals with a simple three sites model for charge transfer phenomena in an one-dimensional donor (D) - bridge (B) - acceptor (A) system coupled with vibrational dynamics of the B site. It is found that in a certain range of parameters the vibrational coupling leads to an enhancement of the effective donor - acceptor electronic coupling as a result of the formation of the polaron on the B site. This enhancement of the charge transfer efficiency is maximum at the resonance, where the effective energy of the fluctuating B site coincides with the donor (acceptor) energy.Comment: 5 pages, 3 figure

    Simulation of a semiflexible polymer in a narrow cylindrical pore

    Full text link
    The probability that a randomly accelerated particle in two dimensions has not yet left a simply connected domain A{\cal A} after a time tt decays as e−E0te^{-E_0t} for long times. The same quantity E0E_0 also determines the confinement free energy per unit length Δf=kBT E0\Delta f=k_BT\thinspace E_0 of a semiflexible polymer in a narrow cylindrical pore with cross section A{\cal A}. From simulations of a randomly accelerated particle we estimate the universal amplitude of Δf\Delta f for both circular and rectangular cross sections.Comment: 10 pages, 2 eps figure

    Erratum: Long range correlations in DNA: scaling properties and charge transfer efficiency (vol 91, art no 228101, 2003)

    Get PDF
    ©2004 The American Physical Society.Depto. de Física de MaterialesFac. de Ciencias FísicasTRUEpu

    Influence of the Environment Fluctuations on Incoherent Neutron Scattering Functions

    Full text link
    In extending the conventional dynamic models, we consider a simple model to account for the environment fluctuations of particle atoms in a protein system and derive the elastic incoherent structure factor (EISF) and the incoherent scattering correlation function C(Q,t) for both the jump dynamics between sites with fluctuating site interspacing and for the diffusion inside a fluctuating sphere. We find that the EISF of the system (or the normalized elastic intensity) is equal to that in the absence of fluctuations averaged over the distribution of site interspacing or sphere radius a. The scattering correlation function is C(Q,t)=∑nψ(t)C(Q,t)=\sum_{n} \psi(t), where the average is taken over the Q-dependent effective distribution of relaxation rates \lambda_n(a) and \psi(t) is the correlation function of the length a. When \psi(t)=1, the relaxation of C(Q,t) is exponential for the jump dynamics between sites (since \lambda_n(a) is independent of a) while it is nonexponential for diffusion inside a sphere.Comment: 7 pages, 7 eps figure

    Title Stabilization of Membrane Pores by Packing

    Full text link
    We present a model for pore stabilization in membranes without surface tension. Whereas an isolated pore is always unstable (since it either shrinks tending to re-seal or grows without bound til to membrane disintegration), it is shown that excluded volume interactions in a system of many pores can stabilize individual pores of a given size in a certain range of model parameters. For such a multipore membrane system, the distribution of pore size and associated pore lifetime are calculated within the mean field approximation. We predict that, above certain temperature when the effective line tension becomes negative, the membrane exhibits a dynamic sieve-like porous structure.Comment: 4 pages, 4 figure
    • …
    corecore