567 research outputs found

    The T2238C human atrial natriuretic peptide molecular variant and the risk of cardiovascular diseases

    Get PDF
    Atrial natriuretic peptide (ANP) is a cardiac hormone which plays important functions to maintain cardio-renal homeostasis. The peptide structure is highly conserved among species. However, a few gene variants are known to fall within the human ANP gene. The variant rs5065 (T2238C) exerts the most substantial effects. The T to C transition at the 2238 position of the gene (13-23% allele frequency in the general population) leads to the production of a 30-, instead of 28-, amino-acid-long α-carboxy-terminal peptide. In vitro, CC2238/αANP increases the levels of reactive oxygen species and causes endothelial damage, vascular smooth muscle cells contraction, and increased platelet aggregation. These effects are achieved through the deregulated activation of type C natriuretic peptide receptor, the consequent inhibition of adenylate cyclase activity, and the activation of Giα proteins. In vivo, endothelial dysfunction and increased platelet aggregation are present in human subjects carrying the C2238/αANP allele variant. Several studies documented an increased risk of stroke and of myocardial infarction in C2238/αANP carriers. Recently, an incomplete response to antiplatelet therapy in ischemic heart disease patients carrying the C2238/αANP variant and undergoing percutaneous coronary revascularization has been reported. In summary, the overall evidence supports the concept that T2238C/ANP is a cardiovascular genetic risk factor that needs to be taken into account in daily clinical practice

    Adaptive knowledge-based seismic risk assessment of existing reinforced concrete buildings using the SLaMA method

    Get PDF
    This paper presents and discusses the ongoing developments towards the definition of a multi-knowledge level seismic assessment procedure for large-scale seismic risk applications. The procedure involves the analytical-mechanical SLaMA (Simple Lateral Mechanism Analysis) method and allows for an adaptive and updatable assessment of the seismic performance of buildings accounting for different data acquisition (knowledge) levels. By coupling this approach with vulnerability assessment survey forms, a range/domain of expected capacity curves of a structure can be obtained and used to evaluate the seismic safety and the expected economic losses according to the state-of-the-art procedures in literature. Moreover, the results of the analytical assessment method can be used to develop fragility curves through simplified spectrum-based procedures. Combining the results of the fragility analysis with the hazard analysis, the seismic risk of a structure can be assessed in terms of Mean Annual Frequency (MAF) of collapse, as well as in terms of Expected Annual Losses (EAL). The proposed SLaMA-based approach is illustrated for an existing reinforced concrete building. Results confirm the effectiveness of the methodology for seismic-risk assessment studies at large scale, thus overcoming the issue related to limited building information, yet allowing for a continuous update of the “digital twin” model as further data/information becomes available

    DNA breaks are masked by multiple Rap1 binding in yeast: implications for telomere capping and telomerase regulation

    Get PDF
    Eukaryotic cells distinguish their chromosome ends from accidental DNA double-strand breaks by packaging them in a protective structure referred to as the telomere “cap.” Here we investigate the nature of the telomere cap by examining events at DNA breaks generated adjacent to either natural telomeric sequences (TG repeats) or arrays of Rap1-binding sites that vary in length. Although DNA breaks adjacent to either short or long telomeric sequences are efficiently converted into stable telomeres, they elicit very different initial responses. Short telomeric sequences (80 base pair [bp]) are avidly bound by Mre11, as well as the telomere capping protein Cdc13 and telomerase enzyme, consistent with their rapid telomerase-dependent elongation. Surprisingly, little or no Mre11 binding is detected at long telomere tracts (250 bp), and this is correlated with reduced Cdc13 and telomerase binding. Consistent with these observations, ends with long telomere tracts undergo strongly reduced exonucleolytic resection and display limited binding by both Rpa1 and Mec1, suggesting that they fail to elicit a checkpoint response. Rap1 binding is required for end concealment at long tracts, but Rif proteins, yKu, and Cdc13 are not. These results shed light on the nature of the telomere cap and mechanisms that regulate telomerase access at chromosome ends

    Fragility curves for low-damage rocking dissipative connections of precast concrete buildings

    Get PDF
    Different low-damage technologies have recently been developed to meet society’s growing expectations for earthquake-proof buildings. Among others, the PRESSS (PREcast Seismic Structural System) technology has proved its capability to withstand earthquakes with minimal damage, effectively mitigating socio-economic losses. However, applying loss assessment methodologies can pose challenges due to the lack of data regarding fragility functions for low-damage structural components. This paper aims to propose a method for computing numerical fragility curves for rocking dissipative structural components. To achieve this, archetypes of precast concrete structures were analyzed to develop fragility models for this technolog

    Seismic performance of Point Fixed Glass Facade Systems through Finite Element Modelling and proposal of a low-damage connection system

    Get PDF
    Among glazed curtain walls, the growing interest in Point Fixed Glass Facade Systems (PFGFS), simply known as “Spider Glazing”, is mainly due to their aesthetics, architectural attractiveness and high transparency they can provide when compared to more traditional framed glass facades. PFGFS are in fact punctually attached to the structure by using spider arms and bolted fittings. However, some PFGFS solutions have shown an unexpected moderate seismic vulnerability in recent earthquake events, as a consequence of inadequate connection detailing. As part of current seismic design philosophy, high structural and non-structural damage is accepted under a design-level earthquake. This inevitably leads to high post-earthquake losses in terms of both repair costs and business interruption for the damaged buildings. Therefore, nowadays the need for research efforts towards the development of low-damage technologies for the overall building system, including structural and non-structural components, is increasingly recognized. This paper aims at investigating the seismic performance of PFGFS through numerical studies at both localconnection level, by advanced non-linear FEM modelling implemented in ABAQUS software, and at globalfacade system level, through a simplified lumped plasticity macro-model developed in SAP2000 program. Non-linear static (PushOver) analyses have been carried out to assess the overall in-plane capacity of the facade. Based on the numerical outcomes obtained for a PFGFS consisting of traditional connections (i.e., available on the market), a novel low-damage system has been proposed. This solution comprises horizontal slotted holes for the bolted connection of the spider arms to the supporting structure. A parametric analysis, involving the variation of the slotted hole length, has been finally performed to study the effectiveness of the proposed solution. Results highlight the improvement of the in-plane capacity of the PFGFS, specifically an increase of the maximum allowable inter-storey drift ratio from 1.17% for the traditional system to 2.49% for the low-damage connection

    C2238/αANP modulates apolipoprotein E through Egr-1/miR199a in vascular smooth muscle cells in vitro

    Get PDF
    Subjects carrying the T2238C ANP gene variant have a higher risk to suffer a stroke or myocardial infarction. The mechanisms through which T2238C/αANP exerts detrimental vascular effects need to be fully clarified. In the present work we aimed at exploring the impact of C2238/αANP (mutant form) on atherosclerosis-related pathways. As a first step, an atherosclerosis gene expression macroarray analysis was performed in vascular smooth muscle cells (VSMCs) exposed to either T2238/αANP (wild type) or C2238/αANP. The major finding was that apolipoprotein E (ApoE) gene expression was significantly downregulated by C2238/αANP and it was upregulated by T2238/αANP. We subsequently found that C2238/αANP induces ApoE downregulation through type C natriuretic peptide receptor (NPR-C)-dependent mechanisms involving the upregulation of miR199a-3p and miR199a-5p and the downregulation of DNAJA4. In fact, NPR-C knockdown rescued ApoE level. Upregulation of miR199a by NPR-C was mediated by a reactive oxygen species-dependent increase of the early growth response protein-1 (Egr-1) transcription factor. In fact, Egr-1 knockdown abolished the impact of C2238/αANP on ApoE and miR199a. Of note, downregulation of ApoE by C2238/αANP was associated with a significant increase in inflammation, apoptosis and necrosis that was completely rescued by the exogenous administration of recombinant ApoE. In conclusion, our study dissected a novel mechanism of vascular damage exerted by C2238/αANP that is mediated by ApoE downregulation. We provide the first demonstration that C2238/αANP downregulates ApoE in VSMCs through NPR-C-dependent activation of Egr-1 and the consequent upregulation of miR199a. Restoring ApoE levels could represent a potential therapeutic strategy to counteract the harmful effects of C2238/αANP

    Reduced brain UCP2 expression mediated by microRNA-503 contributes to increased stroke susceptibility in the high-salt fed stroke-prone spontaneously hypertensive rat

    Get PDF
    UCP2 maps nearby the lod score peak of STR1-stroke QTL in the SHRSP rat strain. We explored the potential contribution of UCP2 to the high-salt diet (JD)-dependent increased stroke susceptibility of SHRSP. Male SHRSP, SHRSR, two reciprocal SHRSR/SHRSP-STR1/QTL stroke congenic lines received JD for 4 weeks to detect brain UCP2 gene/protein modulation as compared with regular diet (RD). Brains were also analyzed for NF-κB protein expression, oxidative stress level and UCP2-targeted microRNAs expression level. Next, based on knowledge that fenofibrate and Brassica Oleracea (BO) stimulate UCP2 expression through PPARα activation, we monitored stroke occurrence in SHRSP receiving JD plus fenofibrate versus vehicle, JD plus BO juice versus BO juice plus PPARα inhibitor. Brain UCP2 expression was markedly reduced by JD in SHRSP and in the (SHRsr.SHRsp-(D1Rat134-Mt1pa)) congenic line, whereas NF-κB expression and oxidative stress level increased. The opposite phenomenon was observed in the SHRSR and in the (SHRsp.SHRsr-(D1Rat134-Mt1pa)) reciprocal congenic line. Interestingly, the UCP2-targeted rno-microRNA-503 was significantly upregulated in SHRSP and decreased in SHRSR upon JD, with consistent changes in the two reciprocal congenic lines. Both fenofibrate and BO significantly decreased brain microRNA-503 level, upregulated UCP2 expression and protected SHRSP from stroke occurrence. In vitro overexpression of microRNA-503 in endothelial cells suppressed UCP2 expression and led to a significant increase of cell mortality with decreased cell viability. Brain UCP2 downregulation is a determinant of increased stroke predisposition in high-salt-fed SHRSP. In this context, UCP2 can be modulated by both pharmacological and nutraceutical agents. The microRNA-503 significantly contributes to mediate brain UCP2 downregulation in JD-fed SHRSP

    Design and realization of the CUFF - clenching upper-limb force feedback wearable device for distributed mechano-tactile stimulation of normal and tangential skin forces

    Get PDF
    Rendering forces to the user is one of the main goals of haptic technology. While most force-feedback interfaces are robotic manipulators, attached to a fixed frame and designed to exert forces on the users while being moved, more recent haptic research introduced two novel important ideas. On one side, cutaneous stimulation aims at rendering haptic stimuli at the level of the skin, with a distributed, rather than, concentrated approach. On the other side, wearable haptics focuses on highly portable and mobile devices, which can be carried and worn by the user as the haptic equivalent of an mp3 player. This paper presents a light and simple wearable device (CUFF) for the distributed mechano-tactile stimulation of the user's arm skin with pressure and stretch cues, related to normal and tangential forces, respectively. The working principle and the mechanical and control implementation of the CUFF device are presented. Then, after a basic functional validation, a first application of the device is shown, where it is used to render the grasping force of a robotic hand (the Pisa/IIT SoftHand). Preliminary results show that the device is capable to deliver in a reliable manner grasping force information, thus eliciting a good softness discrimination in users and enhancing the overall grasping experience
    corecore