16 research outputs found

    Learning-based content caching with time-varying popularity profiles

    Get PDF
    Content caching at the small-cell base stations (sBSs) in a heterogeneous wireless network is considered. A cost function is proposed that captures the backhaul link load called the "offloading loss", which measures the fraction of the requested files that are not available in the sBS caches. Previous approaches minimize this offloading loss assuming that the popularity profile of the content is time-invariant and perfectly known. However, in many practical applications, the popularity profile is unknown and time-varying. Therefore, the analysis of caching with non-stationary and statistically dependent popularity profiles (assumed unknown, and hence, estimated) is studied in this paper from a learning-theoretic perspective. A probably approximately correct (PAC) result is derived, in which a high probability bound on the offloading loss difference, i.e., the error between the estimated (outdated) and the optimal offloading loss, is investigated. The difference is a function of the Rademacher complexity of the set of all probability measures on the set of cached content items, the β-mixing coefficient, 1/√t (t is the number of time slots), and a measure of discrepancy between the estimated and true popularity profiles

    Adverse childhood experiences and substance misuse in young people in India: results from the multisite cVEDA cohort

    Get PDF
    Background: Adverse childhood experiences (ACEs) increases vulnerability to externalising disorders such as substance misuse. The study aims to determine the prevalence of ACEs and its association with substance misuse. Methods: Data from the Consortium on Vulnerability to Externalising Disorders and Addictions (cVEDA) in India was used (n = 9010). ACEs were evaluated using the World Health Organisation (WHO) Adverse Childhood Experiences International Questionnaire whilst substance misuse was assessed using the WHO Alcohol, Smoking and Substance Involvement Screening Test. A random-effects, two-stage individual patient data meta-analysis explained the associations between ACEs and substance misuse with adjustments for confounders such as sex and family structure. Results: 1 in 2 participants reported child maltreatment ACEs and family level ACEs. Except for sexual abuse, males report more of every individual childhood adversity and are more likely to report misusing substances compared with females (87.3% vs. 12.7%). In adolescents, family level ACEs (adj OR 4.2, 95% CI 1.5–11.7) and collective level ACEs (adj OR 6.6, 95% CI 1.4–31.1) show associations with substance misuse whilst in young adults, child level ACEs such as maltreatment show similar strong associations (adj OR 2.0, 95% CI 1.1–3.5). Conclusion: ACEs such as abuse and domestic violence are strongly associated with substance misuse, most commonly tobacco, in adolescent and young adult males in India. The results suggest enhancing current ACE resilience programmes and ‘trauma-informed’ approaches to tackling longer-term impact of ACEs in India. Funding: Newton Bhabha Grant jointly funded by the Medical Research Council, UK (MR/N000390/1) and the Indian Council of Medical Research (ICMR/MRC-UK/3/M/2015-NCD-I)

    Mitochondria and the central nervous system: searching for a pathophysiological basis of psychiatric disorders

    Full text link

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Power Controlled Reverse Channel Training Achieves an Infinite Diversity Order in a TDD-SIMO System with Perfect CSIR

    No full text
    In this letter, we analyze the Diversity Multiplexinggain Tradeoff (DMT) performance of a training-based reciprocal Single Input Multiple Output (SIMO) system. Assuming Channel State Information (CSI) is available at the Receiver (CSIR), we propose a channel-dependent power-controlled Reverse Channel Training (RCT) scheme that enables the transmitter to directly estimate the power control parameter to be used for the forwardlink data transmission. We show that, with an RCT power of (P) over bar (gamma), gamma > 0 and a forward data transmission power of (P) over bar, our proposed scheme achieves an infinite diversity order for 0 <= g(m) < L-c-L-B,L-tau/L-c min(gamma, 1) and r > 2, where g(m) is the multiplexing gain, L-c is the channel coherence time, L-B,L-tau is the RCT duration and r is the number of receive antennas. We also derive an upper bound on the outage probability and show that it goes to zero asymptotically as exp(-(P) over bar (E)), where E (sic) (gamma - g(m)L(c)/L-c-L-B,L-tau), at high (P) over bar. Thus, the proposed scheme achieves a significantly better DMT performance compared to the finite diversity order achieved by channel-agnostic, fixed-power RCT schemes

    Channel training signal design for reciprocal multiple antenna systems with beamforming

    No full text
    Fast and efficient channel estimation is key to achieving high data rate performance in mobile and vehicular communication systems, where the channel is fast time-varying. To this end, this work proposes and optimizes channel-dependent training schemes for reciprocal Multiple-Input Multiple-Output (MIMO) channels with beamforming (BF) at the transmitter and receiver. First, assuming that Channel State Information (CSI) is available at the receiver, a channel-dependent Reverse Channel Training (RCT) signal is proposed that enables efficient estimation of the BF vector at the transmitter with a minimum training duration of only one symbol. In contrast, conventional orthogonal training requires a minimum training duration equal to the number of receive antennas. A tight approximation to the capacity lower bound on the system is derived, which is used as a performance metric to optimize the parameters of the RCT. Next, assuming that CSI is available at the transmitter, a channel-dependent forward-link training signal is proposed and its power and duration are optimized with respect to an approximate capacity lower bound. Monte Carlo simulations illustrate the significant performance improvement offered by the proposed channel-dependent training schemes over the existing channel-agnostic orthogonal training schemes

    Power-Controlled Reverse Channel Training in a Multiuser TDD-MIMO Spatial Multiplexing System With CSIR

    No full text
    This paper considers the design of a power-controlled reverse channel training (RCT) scheme for spatial multiplexing (SM)-based data transmission along the dominant modes of the channel in a time-division duplex (TDD) multiple-input and multiple-output (MIMO) system, when channel knowledge is available at the receiver. A channel-dependent power-controlled RCT scheme is proposed, using which the transmitter estimates the beamforming (BF) vectors required for the forward-link SM data transmission. Tight approximate expressions for 1) the mean square error (MSE) in the estimate of the BF vectors, and 2) a capacity lower bound (CLB) for an SM system, are derived and used to optimize the parameters of the training sequence. Moreover, an extension of the channel-dependent training scheme and the data rate analysis to a multiuser scenario with M user terminals is presented. For the single-mode BF system, a closed-form expression for an upper bound on the average sum data rate is derived, which is shown to scale as ((L-c - L-B,L- tau)/L-c) log logM asymptotically in M, where L-c and L-B,L- tau are the channel coherence time and training duration, respectively. The significant performance gain offered by the proposed training sequence over the conventional constant-power orthogonal RCT sequence is demonstrated using Monte Carlo simulations

    On the improvement of diversity-multiplexing gain tradeoff in a training based TDD-simo system

    No full text
    This paper investigates the diversity-multiplexing gain tradeoff (DMT) of a time-division duplex (TDD) single-input multiple-output (SIMO) system with perfect channel state information (CSI) at the receiver (CSIR) and partial CSI at the transmitter (CSIT). The partial CSIT is acquired through a training sequence from the receiver to the transmitter. The training sequence is chosen in an intelligent manner based on the CSIR, to reduce the training length by a factor of r, the number of receive antennas. We show that, for the proposed training scheme and a given channel coherence time, the diversity order increases linearly with r for nonzero multiplexing gain. This is a significant improvement over conventional orthogonal training schemes

    Joint data detection and dominant singular mode estimation in time varying reciprocal MIMO systems

    No full text
    This paper proposes an algorithm for joint data detection and tracking of the dominant singular mode of a time varying channel at the transmitter and receiver of a time division duplex multiple input multiple output beamforming system. The method proposed is a modified expectation maximization algorithm which utilizes an initial estimate to track the dominant modes of the channel at the transmitter and the receiver blindly; and simultaneously detects the un known data. Furthermore, the estimates are constrained to be within a confidence interval of the previous estimate in order to improve the tracking performance and mitigate the effect of error propagation. Monte-Carlo simulation results of the symbol error rate and the mean square inner product between the estimated and the true singular vector are plotted to show the performance benefits offered by the proposed method compared to existing techniques

    Micro-fibre based Porous Composite Propellants with High Regression Rates

    Get PDF
    Harnessing energy at micro-scale from high energy sources has gained significance in recent times for space propulsion and other applications. Conventional solid rocket propellants have advantages in terms of being efficient, compact and safe to handle, though with much lower regression rates as compared to solid explosives. An approach to high regression rates in composite propellants is demonstrated in the present work by the enhancement of fuel-oxidiser interaction, and by the incorporation of micro-scale porosity into the propellant grain. The porous polystyrene-ammonium perchlorate grain designed in this work, based on electrospun micro-fibres and aqueous impregnation, exhibits burning rates more than 25 times as compared to the non-porous grain. Such high regression rates using insensitive propellant compositions have practical implications in the development of micro-thrusters, and in gas generating devices such as MAV launch systems and turbine starters. Detailed preparatory procedure, characterisation techniques, and flame regression studies are included in this paper
    corecore