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Abstract—Content caching at the small-cell base stations
(sBSs) of a heterogeneous wireless network is considered. A
cost function is proposed that captures the backhaul link load
called the “offloading loss”, which measures the fraction of
the requested files that are not available in the sBS caches.
Previous approaches in the literature minimize this offloading
loss assuming that the popularity profile of the cached content is
time-invariant and perfectly known. However, in many practical
applications, the popularity profile is unknown and time-varying.
Therefore, the analysis of caching with non-stationary and
statistically dependent popularity profiles (assumed unknown,
and hence, estimated) is studied in this paper from a learning-
theoretic perspective. A probably approximately correct result is
derived, in which a high probability bound on the offloading loss
difference, i.e., the error between the estimated and the optimal
offloading loss, is investigated. The difference is a function of the
Rademacher complexity of the set of all probability measures
on the set of cached content items, β−mixing coefficient, 1/

√
t

(t is the number of time slots), and a measure of discrepancy
between the estimated and true popularity profiles.

I. INTRODUCTION

A potential drawback of the small-cell infrastructure to
offload wireless data from a macro base station (BS) is that the
backhaul link-capacity required to support the peak data traffic
can be extremely high, necessitating complex and expensive
solutions to ensure high throughput and performance during
peak traffic periods. Caching can reduce the peak load by
shifting part of the traffic to off-peak hours by storing popular
content in cache memories located at small-cell base stations
(sBSs) during off-peak traffic periods [1]. Benefits of coded
caching across sBSs is shown in [2], while in [3] caching
is analyzed for networks modeled using independent Poisson
point processes (PPPs). In [4], proactive caching is shown to
increase the energy efficiency.

Most prior work in this area, including [2] - [4], assumes
a priori knowledge of the popularity profile of the cached
content, which is unreasonable in practical scenarios. This
assumption is relaxed in [5] - [8], and various learning-based
approaches are proposed to estimate the popularity profile;
theoretical analyses have been carried out to study the impli-
cations of learning the popularity profile on the performance
[9], [10]. However, these works assume that the popularity
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profile is stationary and statistically independent across time.
In practice, there are many applications (for example, video
on demand) in which the popularity profile of cached content
is time-varying [11]. Motivated by the growing significance
of caching in improving the quality of service for end-users
during peak traffic periods, we analyze the performance of
a random caching strategy for a non-stationary popularity
profile, which may have statistical dependence across time.

A heterogenous network in which the users, BSs and sBSs
are distributed according to independent PPPs is considered.
The sBSs employ a random caching strategy. A protocol
model for communication is proposed, and a cost function,
which captures the backhaul link overhead called the “of-
floading loss”, is considered. The offloading loss at time t,
which depends on the popularity profile, is denoted by T (t).
Our goal is to obtain risk bounds on this offloading loss
when the popularity profile is time-varying and unknown.
Assuming a deterministic request model, the BS first estimates
the popularity profile based on the requests observed during
the first t slots. It then chooses the caching probabilities
π , (π1, π2, . . . , πN ), where N is the number of popular
content items that can be cached, in order to minimize its of-
floading loss estimate T̂ (t), based on the estimated popularity
profile. sBSs in the coverage area of the BS use this optimal
caching policy to store content items in their caches. Since
the popularity profile is time-varying, it becomes necessary
to frequently refresh the caches, say after every T time slots,
albeit with additional cost. Thus, it is important to investigate
the minimum periodicity T of cache updates that guarantees
the desired offloading loss.

In this paper, we derive probably approximately correct
(PAC) type guarantees on the offloading loss difference
∆T (t, T ), which is defined as the difference between the
offloading loss incurred by using the outdated caching policy
obtained by optimizing T̂ (t) at time t + T , and the optimal
offloading loss at time t + T . We show that ∆T (t, T ) < ε
with a probability of at least 1− δ for any δ > ζ and ε > 0,
where the ζ is a function of the β-mixing coefficient and the
user density. The β-mixing coefficient is a measure of the
statistical dependency of the time-varying popularity profiles.
If the popularity profile process is “sufficiently” mixing, i.e.,
if the process becomes almost independent after a sufficiently
long time and if the user density is very high, then the desired
ε can be achieved for negligibly small δ > 0.

The following are the main findings of this paper: (1) the
error ε increases linearly with N ; (2) the desired error ε can



be achieved with high probability for larger values of user
density, thus improving the caching performance, since higher
user density results in more user-requests, thereby leading to
a better estimate of the popularity profile; (3) the higher the
correlation of the popularity profile across time (defined in
terms of the β−mixing coefficient) the higher the waiting
time t to achieve a target error level ε with high probability
1−δ; (4) the error ε is a function of the rate of change of the
popularity profile, and hence T . Thus, outdated cache content
results in a larger error for a given δ, and a rapidly varying
popularity profile requires more frequent updates to achieve
the desired error performance; (5) the error is a function of
the Rademacher complexity, which is a measure of the diffi-
culty in estimating the offloading loss. A higher Rademacher
complexity results in poorer error performance; and (6) when
the user requests are independent and identically distributed
(i.i.d.), the error performance is better than for non-stationary
and statistically dependent requests. For stationary popularity
profiles and large t, frequent cache-update is unnecessary to
achieve the desired performance.To the best of our knowledge,
this is the first time random caching is studied with non-
stationary, statistically dependent and unknown popularity
profiles from the standpoint of learning theory.

II. SYSTEM MODEL
A heterogenous cellular network is considered in which the

users, BSs and sBSs are distributed according to independent
PPPs with densities λu, λb and λs, respectively [12]. The sets
of users, BSs and sBSs are denoted by Φu ⊆ R2, Φb ⊆ R2

and Φs ⊆ R2, respectively. Randomly, each user requests a
data file of size B bits from the set F , {f1, . . . , fN} of N
files from its neighboring sBSs. The requests are assumed
to be statistically independent across users. However, the
requests from each user are assumed to be non-stationary and
statistically dependent across time. We assume that the size of
the cache at each sBS is at most M files. The problem consid-
ered in this paper is that of caching relevant “popular” files at
the sBSs, wherein, depending on the availability of the file in
the local cache, the requested file from the user will be served
directly by one of the neighboring sBS. In order to access
cached contents, a user u ∈ Φu identifies and communicates
with a set of neighboring sBSs employing the following
protocol: Each sBS s located at xs ∈ Φs communicates with
a user u located at xu ∈ Φu if ‖xu−xs‖< γ, for some γ > 0.
This condition determines the communication radius. In this
protocol, we ignore the interference from other users in the
network. The set of potential neighbors of user u located at xu
is denoted by Nu , {y ∈ Φs : ‖y − xu‖< γ}. The problem
of caching depends on the requests from the users, and its
probability distribution, which is assumed unknown and will
be estimated. In the next subsection, we present the model
for the stochastic process corresponding to the requests from
the users and devise a method for estimating its distribution.

A. User Request Model
In the sequel, we assume that the time is slotted. For any

time τ ∈ R, let Xv(τ) ∈ {1, 2, . . . , N} denote the index

a1 a2 ai a2m

t1 t2 tl

Arrivals Arrivals Arrivals

fX(s) : s 2 R1g fX(s) : s 2 R2g fX(s) : s 2 R2mg

fX(s) : s 2 Rig

Fig. 1: Time [1, t] is divided into 2m blocks with ai arrivals
in the i-th block, i = 1, 2, . . . , 2m such that t =

∑2m
i=1 ai.

The arrival instants in the i-th block is Ri , {t1, t2, . . . , tl}.
The arrivals in the even and odd blocks are coupled with an
independent blocks of arrivals with the same distribution as
that of the original arrivals. Arrivals inside each block can be
arbitrary correlated.

corresponding to a request from a user v ∈ Φu at time
τ . For any two users v, w ∈ Φu, Xv(τ) and Xw(τ) are
independent. However, for each v ∈ Φu, {Xv(τ), τ ∈ R} is a
non-stationary and statistically dependent stochastic process
across time slots, but the distribution within each time slot
is assumed to be fixed. Further, we assume that there is
a “typical” BS at the origin with the coverage area of
radius R > 0. The BS estimates the distribution of the
request process. Essentially, at a given time slot t, the BS
collects requests (for t time slots) from all the users in
its coverage area to estimate the popularity profile of the
requested files. Let nu ∼ Poiss(πλuR2) denote the number
of users in the coverage area of a BS b ∈ Φb of radius
R > 0. Since the request from each user is assumed to
be random, the set of time instants at which the requests
from all the users in the coverage area of the BS arrive
within the ith time slot is denoted by Ri (see Fig. 1). Let
X(s) ,

⋃
v∈Φu

⋂
B(0,R){Xv(s)} denote the set of requests

from all the users in the coverage area of the BS at time
s ∈ R, where B(0, R) denotes a ball of radius R centered at
the origin. The set of requests from all the users in time slots
t1 to t2 is denoted by Xt1,t2 , {X(s) : s ∈ Rt1,t2}, where
Rt1,t2 ,

⋃t2
i=t1
Ri. After receiving requests X1,t within time

slots 1 to t, the BS computes the empirical estimate of the
popularity profile, i.e., the probability of the ith file being
requested in time slot t, as follows:

p̂i,t =
1

rt

∑
s∈R1,t

1{X(s) = i}, i = 1, . . . , N, (1)

where rt , |R1,t| is the total number of requests in t slots.
The efficiency of the estimate P̂(t) , {p̂i,t : i = 1, 2, . . . , N}
depends on (i) the number of available samples, which in turn
is related to the number of users in the coverage area of the
BS, (ii) the number of requests per user, and (iii) the behavior
of the process X(s). The estimate in (1) is valid only when
there is a positive number of user requests. The following
user-request model makes this point precise.

Definition 1: (User-Request Model) Assuming that time
is slotted, there exist constants 0 ≤ αmin ≤ αmax ≤ 1 such



that for any random n ≥ 1 users in the coverage area of the
BS, the number of requests in a ∈ N time slots, denoted by
ra ∈ N, satisfies αminna ≤ ra ≤ αmaxna.

This definition avoids the dependence of the arrival pro-
cess on the estimation accuracy, thereby capturing only the
non-stationary behavior of the popularity profile. It can be
generalized to handle random request models such as Poisson
arrivals, since the condition in Definition 1 holds with nonzero
probability which can be used to provide performance guar-
antees. In the next section, we present a metric for the above
model, and state the main problem addressed in the paper.

III. PROBLEM STATEMENT

We consider a typical user located at the origin denoted by
o ∈ Φu. At time slot t ∈ N, the following “offloading loss”
is used as a metric:

T (Π(t),P(t), X1,t−1) ,
B

R0
Pr {fo /∈ Nu | X1,t−1} , (2)

where fo denotes the file requested by the typical user.
The offloading loss is the scaled probability of the content
requested by user o not being cached by any of the sBSs
within its communication range conditioned on the requests
received by the BS until the beginning of time slot t, i.e.,
X1,t−1. The metric depends on the caching policy, denoted
by Π(t). In (2), R0 and B

R0
denote the rate supported by the BS

and the time overhead incurred in transmitting the file from
the BS to the user, respectively. We employ the following
random caching strategy, which enables us to derive a closed
form expression for the offloading loss:

Definition 2: (Caching strategy) At time t (determined
by the BS), each sBS s ∈ Φs caches the content in an
i.i.d. fashion by generating M indices distributed according
to Π(t) ,

{
πi(t) :

∑N
i=1 πi(t) = 1,∀t

}
(see [13]), where, for

the sake of analysis, we assume that a maximum of M files,
each of length B bits, can be cached in the sBSs.

Ideally, we seek to solve the following optimization prob-
lem:

min
Π(τ)∈Pπ :τ∈N

lim sup
t→∞

1

t

t∑
τ=1

T (Π(τ),P(τ), X1,τ−1), (3)

where Pπ denotes the N−dimensional probability simplex.
An expression for T (Π(t),P(t), X1,t−1) is given in the fol-
lowing theorem, which can be proved by replacing pi by
pX,i(t) in [10, Appendix A].

Theorem 1: The average offloading loss at time t for a
random caching strategy Π(t) is given by

T (Π(t),P(t), X1,t−1) =

[
N∑
i=1

g(πi(t))pX,i(t)

]
, (4)

where pX,i(t) , Pr{fi requested |X1,t−1}, and g(πi(t)) ,
B
R0

exp{−λuπγ2[1− (1− πi(t))M ]}.
Despite assuming that the conditional probabilities are per-

fectly known, the complexity involved in solving the problem
in (3) can be high owing to the fact that the caching policies

at time t depends on X1,t, which grows with t. In practice,
the conditional probability Pr{fi requested |X1,t−1} is un-
known, and has to be estimated. Also, the BS will not have
enough samples to compute a reasonably good estimate of the
conditional probability. Furthermore, the complexity involved
in estimating the conditional probability can be high. Hence
it is reasonable to consider the unconditional probability in
the definition of the offloading loss. Assuming that X1,t1 and
X1,t2 , t1 � t2 are approximately independent (see the next
section), it is possible to approximate the conditional proba-
bility by its unconditional version. Thus, one can minimize the
offloading loss T (Π(t),P(t)) ,

[∑N
i=1 g(πi(t))pi(t)

]
, where

pi(t) is the probability of the ith file getting requested at time
t. However, the offloading loss is unknown, and hence an
estimate of the popularity profile needs to be used in place
of P(t). More precisely, at time t, let Π̂∗t denote the caching
policy obtained using an estimate P̂(t), i.e.,

Π̂∗t = arg min
Π(t)∈Pπ

T (Π(t), P̂(t)). (5)

Suppose the cache contents chosen by the optimal caching
policy at time t will be used to satisfy user demands over the
period (t, t+ T ]. Due to the above mentioned reasons, let us
consider the loss in using Π̂∗t at a later time, say at time t+T
on the offloading loss compared to using the optimal caching
strategy at t+T as a metric. The offloading loss at time t+T
is given by T̂ ∗(t + T ) , T (Π̂∗t ,P(t+T )). Further, let Π∗t+T
denote the optimal caching policy at time t+T using perfect
knowledge of the popularity profile P(t+T ), i.e.,

Π∗t+T = arg min
Π(t+T )∈Pπ

T (Π(t+T ),P(t+T )), (6)

with the corresponding offloading loss T ∗(t + T ) ,
T (Π∗t+T ,P(t+T )). Similar to [10], the central theme of
this paper is the analysis of the offloading loss difference
∆T (t, T ) , T̂ ∗(t+T )−T ∗(t+T ). For example, if ∆T (t, T )
is small, then each term in (3) is small, and therefore results
in a small average error. This approach is used in analyzing
problems involving non-stationary stochastic processes [14].

IV. MAIN RESULTS

We study risk bounds on the offloading loss difference,
∆T (t, T ) when the popularity profile is non-stationary. Es-
sentially, for any ε > 0, we seek to identify a risk bound
δ > 0, such that

Pr
{
T̂ ∗(t+ T )− T ∗(t+ T ) > ε

}
< δ. (7)

First, we relate (7) to an expression in terms of the estimation
error in the following theorem.

Theorem 2: For the estimate of the popularity profile in
(1), the following bound holds:

Pr
{
T̂ ∗(t+ T )− T ∗(t+ T ) > ε

}
≤ 2 Pr {AT (X1,t) > ε} ,

where AT (X1,t) , supΠ∈Pπ

∣∣∣∑N
i=1 g(πi)(p̂i,t − pi,t+T )

∣∣∣,
and g(πi) is defined in Theorem 1.



Proof: See [15, Appendix A].
The term Pr {AT (X1,t) > ε} can be bounded as follows:

Pr {AT (X1,t) > ε} =

∞∑
j=0

α
(u)
t,T,ε(j)

≤ Pr {nu = 0}+

∞∑
j=1

α
(u)
t,T,ε(j)

= exp
{
−λuπR2

}
+

∞∑
j=1

α
(u)
t,T,ε(j),

where α
(u)
t,T,ε(j) , Pr {AT (X1,t) > ε | nu = j}Pr{nu =

j}. We next derive an upper bound on
Pr {AT (X1,t) > ε|nu = j}. The term AT (X1,t) depends
on p̂i,t, which involves the sum of non-stationary random
variables (RVs) which are possibly correlated across time. In
order to apply the standard large deviation bounds, we must
convert the sum of non-stationary dependent RVs to a sum
of blocks of independent random vectors through a coupling
argument, which is explained later in this section. For a
given stochastic process X1,∞, and s ∈ N, let Pτ,τ+s(?)
and P1→τ (? | E)⊗ Pτ+s→∞(?) denote the joint and product
distributions of the stochastic processes X1,τ and Xτ+s,∞,
respectively. If X1,τ and Xτ+s,∞ are independent, then
‖Pτ,τ+s(?) − P1→τ (?) ⊗ Pτ+s→∞(?)‖TV= 0. Thus, for a
given s, this difference, maximized over all 1 ≤ τ ≤ ∞
is a natural measure of the dependency between X1,τ and
Xτ+s,∞. This is commonly referred to as the β−mixing
coefficient. For s ∈ N, the β-mixing coefficient is given by

β(s) , sup
1≤τ≤∞

‖Pτ,τ+s(?)− P1→τ (?)

⊗Pτ+s→∞(?)‖TV. (8)

A stochastic process is said to be β-mixing if β(s) → 0 as
s→∞. For a given stochastic process that is β-mixing, two
well-separated sequences of the process are approximately
independent, where the approximation error is β(s). Thus,
we make the following assumption about the request process.

Definition 3: We assume that the request process X(t) is
a β-mixing stochastic process, i.e., β(s)→ 0 as s→∞.

We now provide the details regarding the coupling ar-
gument where the dependent stochastic process is replaced
by an independent blocks of random variables. This facil-
itates the use of concentration inequality like Mcdiarmid’s
inequality. Next, we make this precise. Fix m ∈ N, and
consider a sequence of consecutive blocks of requests of
size ai ∈ N, i = 1, 2, . . . , 2m, slots such that t =∑2m
j=1 aj . Define a0 = 0. Consider the time instants at

which the requests arrive corresponding to odd and even
blocks defined as T(t)

o ,
⋃
j:j=0,2,4,...,2(m−1)Raj+1,aj+1

and

T(t)
e ,

⋃
j:j=1,3,5,...,2m−1Raj+1,aj+1

, respectively. Thus, the
requests corresponding to the odd and even blocks become
Xe

1,t , {X(s) : s ∈ T(t)
e } and Xo

1,t , {X(s) : s ∈ T(t)
o },

respectively. In order to use a coupling argument, for a fixed
R1,t, we consider a new stochastic process X̃h

1,t , {X̃(s) :

s ∈ T(t)
h }, h ∈ {e, o} such that {X̃(s) : s ∈ Ri, i ∈ T(t)

h } and
{X̃(s) : s ∈ Rj , j ∈ T(t)

h }, i 6= j, h ∈ {e, o} are independent.
In other words, the even (and odd) blocks of X̃1,t are indepen-
dent. However, within each block, the RVs can be arbitrarily
correlated. Further, {X̃(s) : s ∈ Ri} and {X(s) : s ∈ Ri}
have the same distribution, i = 1, 2, . . . , 2m. We can always
construct such a stochastic process, and the pair (X(s), X̃(s))
is called coupling (see Fig. 1). Similar to Xe

1,t and Xo
1,t, define

X̃e
1,t and X̃o

1,t. The following theorem provides a bound on the
performance guarantees in terms of the β−mixing coefficient.

Theorem 3: For the given model, and the popularity es-
timate (1), with a probability of at least 1 − δ, δ >
2(exp

{
−λuπR2

}
+
∑2m−1
i=2 β(ai)), the following holds1:

T̂ ∗(t+ T )<T ∗(t+ T ) + min{E[AT (X̃e
1,t)],E[AT (X̃o

1,t)]}

+
NαmaxBamax
αminR0amin

√√√√ log
(

1
δ′

)
2m

. (9)

In (9), δ
′
, δ/2− exp

{
−λuπR2

}
−
∑2m−1
i=2 β(ai) > 0,

AT (X̃
(h)
1,t ) , sup

Π∈Pπ

∣∣∣∣∣
N∑
i=1

g(πi)
(
p̂hi,t − pi,t+T

)∣∣∣∣∣ , (10)

where p̂hi,t ,
1∣∣∣T(t)
h

∣∣∣
∑
s∈T(t)

h

1{X̃(s) = i}, h ∈ {e, o}.

Proof: See Appendix A.
Next, we bound min{E[AT (X̃e

1,t)],E[AT (X̃o
1,t)]} to get

the desired result. The bound that we derive depends on
the Rademacher complexity and the nonstationarity of the
stochastic process. We begin with the following definition.

Definition 4: (Rademacher complexity) The Rademacher
complexity of Pπ is defined by [16, Chapter 3]

R(t)
h , EX̃,σ

1∣∣∣T(t)
h

∣∣∣ sup
Π∈Pπ

N∑
i=1

g(πi)|
∑
s∈T(t)

h

σi,s1{X̃(s) = i}|,

where the Rademacher RVs σi,s ∈ {−1, 1}, i = 1, 2, . . . , N

and s ∈ T(t)
h are i.i.d. with probability 1/2 each, σ , {σi,s ∈

{−1, 1} : i = 1, 2, . . . , N, s ∈ T(t)
h }, and h ∈ {e, o}.

Next, we provide the main result of this paper.
Theorem 4: For a given model, and the popularity es-

timate in (1), with a probability of at least 1 − δ, δ >
2(exp

{
−λuπR2

}
+
∑2m−1
i=2 β(ai) > 0), the following holds:

T̂ ∗(t+ T ) < T ∗(t+ T ) + max{R(t)
e ,R(t)

o }

+ max{∆(e)
t,T ,∆

(o)
t,T }+

NαmaxBamax
R0aminαmin

√√√√amax log
(

1
δ′

)
t

, (11)

where R(t)
h is the Rademacher complexity, amax ,

max1≤i≤2m ai, ∆
(h)
t,T , supΠ∈Pπ

∑N
i=1 g(πi)d

(h)
i (t, T ),

d
(h)
i (t, T ) , 1∣∣∣T(t)

h

∣∣∣
∑
s∈T(t)

h

|pi,s − pi,t+T |, h ∈ {e, o}, and

δ
′

is as defined in Theorem 3.
Proof: See [15, Appendix B].

1Here, the dependency of caching probability on t is omitted for brevity.
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Fig. 2: Offloading loss as a function of the cache size.

V. DISCUSSION

Theorem 4 suggests that sBSs should update their
caches at the time instant at which the error becomes
large. The only relevant term is max{∆(e)

t,T ,∆
(o)
t,T } ≤ ∆t,T ,

1∣∣∣T(t)
e

⋃
T(t)
o

∣∣∣ supΠ∈Pπ
∑N
i=1

∑
s∈T(t)

o

⋃
T(t)
e
g(πi) |pi,s − pi,t+T |.

The following cache update mechanism is employed:
1) Initialize t = 0 and T = 0. Update the caches randomly.
2) If ∆t,T > threshold, then update the caches us-

ing the caching probability obtained by solving Π̂∗t+T =
arg minΠ(t+T )∈Pπ T (Π(t+T ), P̂(t+T−1)), where P̂(t+T−1)

is the estimate obtained using (1), and set T = t. Here,
threshold > 0 determines the error achieved.

3) Set t→ t+ 1 and goto step 2.

The behavior of the offloading loss for varying cache
sizes is demonstrated experimentally. The setup comprises
sBSs and users distributed according to a PPP with densities
λB = 0.00001 and λu = 0.0001, respectively. The support of
the popularity profile N = 50, and the coverage of the BS and
sBSs are 1000 m and 500 m, respectively. We let γ = 500.
The requests follow a Poisson arrival with rate λr = 0.05. The
requests for the files are generated using the Zipf distribution
with the parameter chosen uniformly in the interval (0.9, 1.1),
and the file index is randomly and uniformly permuted in
every time slot. This results in an independent but non-
stationary arrival of requests. The requests from a typical user
at the origin are used to access the offloading loss. We assume
perfect knowledge of ∆

(h)
t,T at the BS. Fig. 2 shows a plot

of the offloading loss with B = R0 as a function of cache
size for the following scenarios: (i) cache update mechanism
with threshold = 0.0003, (ii) periodic caching with period
10 and 4 slots for cache sizes 10, 15, 20, 25 and 30. In
the periodic caching scheme, we follow the aforementioned
caching policy, however, the cache update is periodic. From
Fig. 2, we see that the cache update algorithm outperforms
periodic caching, since the cache is updated only when
required. Increasing the periodicity degrades the performance
as the cache update becomes less frequent.

The following remarks are in order (see (11)): (a) The error
ε increases linearly with N . To compensate for larger values
of N , the waiting time t should be of the order of N2; a
similar observation was made in our earlier work [10]. As λu
increases, a lower value of δ can be achieved. In general, as
λu → ∞, δ = 0 cannot be achieved due to the dependence
of the stochastic process across time, i.e., β(a) > 0, a > 0.
(b) The error ε decreases as t increases. When the requests
are i.i.d., amax = 1, and hence ε, is small. Thus, when the
requests are correlated we incur a penalty amax, since the
error decreases as

√
1/(t/amax) compared to

√
1/t for i.i.d.

requests. The error can be reduced by choosing amax = 1,
i.e., ai = 1, i = 1, . . . , 2m. Since β(x) is a monotonically
decreasing function of x, the probability of achieving lower
error is very small, indicating a tradeoff between the error
and the probability with which the bound in (11) holds. Also,
lower values of δ

′
result in a higher error. (c) The error

ε increases with αmax

αmin
. The higher this ratio, the larger the

variation in the number of requests. On the other hand, the
lower this ratio the lesser the error which indicates more
number of requests. The non-stationarity of the process is
captured through ∆

(h)
t,T , h ∈ {e, o}. For a stationary process

∆
(h)
t,T = 0, h ∈ {e, o}. (d) When the user requests are i.i.d., the

error ε 9 0 as t → ∞ because the Rademacher complexity
will not go to zero as t→∞. This indicates the difficulty in
estimating the offloading loss, or equivalently the popularity
profile for a given caching policy. (e) The only term that
depends on T is max{∆(e)

t,T ,∆
(o)
t,T }. The frequency with which

the cache update should be done depends on ∆
(h)
t,T , h ∈ {e, o}.

For higher ∆
(h)
t,T , the cache update should be frequent.

VI. CONCLUDING REMARKS

A learning-theoretic analysis of content caching in het-
erogenous networks with non-stationary, statistically depen-
dent and unknown popularity profiles has been considered. At
every slot t, the BS computes an estimate of the Rademacher
complexity and the discrepancy based on the available re-
quests. The optimal caching policy is employed at the BS and
the cache contents at sBSs are updated only if the discrepancy
in the popularity profile is larger than a pre-specified threshold
(to be determined based on the error tolerance).

APPENDIX A
PROOF OF THEOREM 3

Consider the following:

(12)

AT (X1,t)
(a)

≤ sup
Π ∈Pπ

∣∣∣∣∣∣
∣∣∣T(t)
e

∣∣∣
rt

N∑
i=1

g(πi)
(
p̂ei,t − pi,t+T

)∣∣∣∣∣∣
+ sup

Π ∈Pπ

∣∣∣∣∣∣
∣∣∣T(t)
o

∣∣∣
rt

N∑
i=1

g(πi)
(
p̂oi,t − pi,t+T

)∣∣∣∣∣∣
(b)

≤

∣∣∣T(t)
e

∣∣∣
rt
AT (Xe

1,t) +

∣∣∣T(t)
o

∣∣∣
rt
AT (Xo

1,t),



where p̂hi,t , 1∣∣∣T(t)
h

∣∣∣
∑
s∈T(t)

h

1{X(s) = i}, h ∈ {e, o}, and

AT (X
(h)
1,t ) , supΠ∈Pπ

∣∣∣∑N
i=1 g(πi)

(
p̂hi,t − pi,t+T

)∣∣∣. In (12),
(a) follows from algebraic manipulation and the triangle
inequality, and (b) follows from the convexity property. Using
(12), and the union bound, we can write

Pr{AT (X1,t) > ε|nu = j} ≤ Pr{

∣∣∣T(t)
e

∣∣∣
rt
AeT (X1,t)

+

∣∣∣T(t)
o

∣∣∣
rt
AoT (X1,t) > ε|nu = j}

(a)

≤ Pr{AT (Xe
1,t) > ε|nu = j}+ Pr{AT (Xo

1,t) > ε|nu = j},

where (a) follows from the union bound. We now bound
the term corresponding to the even samples (the bound on
the term corresponding to the odd samples is similar and
is not shown here for sake of brevity). We begin with
Pr{AT (Xe

1,t) > ε|nu = j}=E[1{AT (Xe
1,t) > ε}|nu = j].

Since the indicator function is bounded, using [14, Proposition
1], we have the following upper bound:

E[1{AT (Xe
1,t) > ε}|nu = j] ≤

E[1{AT (X̃e
1,t) > ε}|nu = j] +

m∑
i=2

β(a2i−1),

= Pr{AT (X̃e
1,t) > ε|nu = j}+

m∑
i=2

β(a2i−1), (13)

where X̃e
1,t is as defined in Section IV. Since the conditioning

is on {nu = j}, the time slot difference between adjacent
even/odd block is deterministic, and the β-mixing is not
conditioned on the event. Similarly, it can be shown that

E[1{AT (Xo
1,t) > ε}|nu = j] ≤ α̃t,T,o(j) +

m−1∑
j=1

β(a2j), (14)

where α̃t,T,h(j) , Pr{AT (X̃h
1,t) > ε|nu = j}, h ∈ {e, o},

and AT (X̃e
1,t) (resp. AT (X̃o

1,t)) is obtained by replacing each
block of data in Xe

1,t (resp. Xo
1,t) by X̃e

1,t (resp. X̃o
1,t) in the

definition of AT (Xe
1,t) (resp. AT (Xo

1,t)). Therefore, we have

Pr{AT (X1,t) > ε|nu = j} ≤
∑

h∈{e,o}

α̃t,T,h(j) +

2m−1∑
j=2

β(aj).

(15)

Since each of the event above involves sum of blocks of data
that are independent, we employ McDiarmid’s inequality to
get the following result.

Theorem 5: For any max{E[AT (X̃e
1,t)],E[AT (X̃o

1,t)]} <
ε, and m > 0, the following bound holds for all j ≥ 1:∑
h∈{e,o}

Pr{AT (X̃h
1,t) > ε|nu = j} ≤ exp {−2mgN} , (16)

where gN , R2
0a

2
min min{ε2e,ε

2
o}α

2
min

a2maxB
2α2

maxN
2 , amax , max1≤i≤2m ai,

amin , min1≤i≤2m ai, and εh , ε−E[AT (X̃h
1,t)], h ∈ {e, o}.

Proof: See [15, Appendix C].
The bound in (16) is independent of j. Substituting the

bound (16) into (15), and using the result in (8), we get

Pr {AT (X1,t) > ε} ≤ exp
{
−λuπR2

}
+Gm, (17)

where Gm , exp {−ψm} +
∑2m−1
i=2 β(ai), ψ ,

2R2
0a

2
min min{ε2e,ε

2
o}α

2
min

a2maxB
2α2

maxN
2 . We need Pr {AT (X1,t) > ε} < δ/2,

which implies that

min{εe, εo} >
NαmaxBamax
αminR0amin

√√√√ log
(

1
δ′

)
2m

, (18)

where δ
′
, δ/2− exp

{
−λuπR2

}
−
∑2m−1
i=2 β(ai) > 0. But,

εh = ε−E
[
AT (X̃h

1,t)
]
, h ∈ {e, o}. Using this in (18) results

in the following constraint: ε > Et,T + NαmaxBamax
αminR0amin

√
log
(

1

δ
′

)
2m ,

where Et,T , min
{
E
[
AT (X̃e

1,t)
]
,E
[
AT (X̃o

1,t)
]}

. Using
this constraint for ε, the bound in the theorem follows with a
probability of at least (1− δ).
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