25 research outputs found

    Ciliary Extracellular Vesicles are Distinct from the Cytosolic Extracellular Vesicles

    Get PDF
    Extracellular vesicles (EVs) are cell‐derived membrane vesicles that are released into the extracellular space. EVs encapsulate key proteins and mediate intercellular signalling pathways. Recently, primary cilia have been shown to release EVs under fluid‐shear flow, but many proteins encapsulated in these vesicles have never been identified. Primary cilia are ubiquitous mechanosensory organelles that protrude from the apical surface of almost all human cells. Primary cilia also serve as compartments for signalling pathways, and their defects have been associated with a wide range of human genetic diseases called ciliopathies. To better understand the mechanism of ciliopathies, it is imperative to know the distinctive protein profiles of the differently sourced EVs (cilia vs cytosol). Here, we isolated EVs from ciliated wild‐type (WT) and non‐ciliated IFT88 knockout (KO) mouse endothelial cells using fluid‐shear flow followed by a conventional method of EV isolation. EVs isolated from WT and KO exhibited distinctive sizes. Differences in EV protein contents were studied using liquid chromatography with tandem mass spectrometry (LC‐MS‐MS) and proteomic comparative analysis, which allowed us to classify proteins between ciliary EVs and cytosolic EVs derived from WT and KO, respectively. A total of 79 proteins were exclusively expressed in WT EVs, 145 solely in KO EVs, and 524 in both EVs. Our bioinformatics analyses revealed 29% distinct protein classes and 75% distinct signalling pathways between WT and KO EVs. Based on our statistical analyses and in vitro studies, we identified NADPH‐cytochrome P450 reductase (POR), and CD166 antigen (CD166) as potential biomarkers for ciliary and cytosolic EVs, respectively. Our protein‐protein interaction network analysis revealed that POR, but not CD166, interacted with either established or strong ciliopathy gene candidates. This report shows the unique differences between EVs secreted from cilia and the cytosol. These results will be important in advancing our understanding of human genetic diseases

    Gastrocnemius-Soleus Muscle Tendon Unit Changes Over the First 12 Weeks of Adjusted Age in Infants Born Preterm

    Get PDF
    Background and Purpose: Differences in the gastrocnemius-soleus muscle and tendon have been documented shortly after birth in infants born preterm compared with infants born at term. Knowledge of muscle tendon unit lengths at term age to 12 weeks of age in infants born preterm may be useful in understanding motor development. Participants and Method: Gastrocnemius-soleus muscle tendon unit lengths were compared at term age, at 6 weeks of age, and at 12 weeks of age (preterm adjusted age) in 20 infants born full term and 22 infants born preterm. Results: Significant differences were found between the 2 groups on taut tendon, relaxed muscle length (AO); taut tendon, stretched muscle length (AMax); and muscle stretch (AO to AMax). Infants born preterm demonstrated measures of AO and AMax in positions of greater plantar flexion compared with infants born full term. Significant differences in measurements of AO were found between term age and 12 weeks of age, indicating that the tendon lengthens during this period for both groups. Discussion and Conclusion: These results provide knowledge of musculoskeletal development of the gastrocnemius-soleus muscle and tendon. Differences in musculoskeletal measurements are consistent with uterine confinement in the last weeks of full-term gestation. These findings have implications when examining the musculoskeletal system in infants born preterm who are demonstrating functional changes

    Nat. Nanotechnol.

    No full text

    Ciliary extracellular vesicles are distinct from the cytosolic extracellular vesicles

    No full text
    Extracellular vesicles (EVs) are cell‐derived membrane vesicles that are released into the extracellular space. EVs encapsulate key proteins and mediate intercellular signalling pathways. Recently, primary cilia have been shown to release EVs under fluid‐shear flow, but many proteins encapsulated in these vesicles have never been identified. Primary cilia are ubiquitous mechanosensory organelles that protrude from the apical surface of almost all human cells. Primary cilia also serve as compartments for signalling pathways, and their defects have been associated with a wide range of human genetic diseases called ciliopathies. To better understand the mechanism of ciliopathies, it is imperative to know the distinctive protein profiles of the differently sourced EVs (cilia vs cytosol). Here, we isolated EVs from ciliated wild‐type (WT) and non‐ciliated IFT88 knockout (KO) mouse endothelial cells using fluid‐shear flow followed by a conventional method of EV isolation. EVs isolated from WT and KO exhibited distinctive sizes. Differences in EV protein contents were studied using liquid chromatography with tandem mass spectrometry (LC‐MS‐MS) and proteomic comparative analysis, which allowed us to classify proteins between ciliary EVs and cytosolic EVs derived from WT and KO, respectively. A total of 79 proteins were exclusively expressed in WT EVs, 145 solely in KO EVs, and 524 in both EVs. Our bioinformatics analyses revealed 29% distinct protein classes and 75% distinct signalling pathways between WT and KO EVs. Based on our statistical analyses and in vitro studies, we identified NADPH‐cytochrome P450 reductase (POR), and CD166 antigen (CD166) as potential biomarkers for ciliary and cytosolic EVs, respectively. Our protein‐protein interaction network analysis revealed that POR, but not CD166, interacted with either established or strong ciliopathy gene candidates. This report shows the unique differences between EVs secreted from cilia and the cytosol. These results will be important in advancing our understanding of human genetic diseases

    Author Response to Invited Commentary by Heathcock [Commentary for: Gastrocnemius/soleus Muscle Tendon Unit Changes Over the First 12 Weeks of Adjusted Age in Infants Born Preterm]

    Get PDF
    We thank Heathcock for taking the time to write her commentaryregarding our study. Her comments are interesting, and our subsequent investigation into these ideas has led us to uncover some enlightening evidence in relation to the topics raised in the commentary. We will attempt to review each of the topics raised and the evidence associated with these topics

    A Precautionary Assessment of Systemic Projections and Promises From Sunlight Reflection and Carbon Removal Modeling

    No full text
    Climate change is a paradigmatic example of systemic risk. Recently, proposals for large-scale interventions—carbon dioxide removal (CDR) and solar radiation management (SRM)— have started to redefine climate governance strategies. We describe how evolving modeling practices are trending toward optimized and “best-case” projections—portraying deployment schemes that create both technically slanted and politically sanitized profiles of risk, as well as ideal objectives for CDR and SRM as mitigation-enhancing, time-buying mechanisms for carbon transitions or vulnerable populations. As promises, stylized and hopeful projections may selectively reinforce industry and political activities built around the inertia of the carbon economy. Some evidence suggests this is the emerging case for certain kinds of CDR, where the prospect of future carbon capture substitutes for present mitigation. Either of these implications are systemic: explorations of climatic futures may entrench certain carbon infrastructures. We point out efforts and recommendations to forestall this trend in the implementation of the Paris Agreement, by creating more stakeholder input and strengthening political real- ism in modeling and other assessments, as well as through policy guardrails
    corecore