3 research outputs found

    Performance and loads data from a hover test of a 0.658-scale V-22 rotor and wing

    Get PDF
    A hover test of a 0.658-scale model of a V-22 rotor and wing was conducted at the Outdoor Aerodynamic Research Facility at Ames Research Center. The primary objectives of the test were to obtain accurate measurements of the hover performance of the rotor system, and to measure the aerodynamic interactions between the rotor and wing. Data were acquired for rotor tip Mach numbers ranging from 0.1 to 0.73. This report presents data on rotor performance, rotor-wake downwash velocities, rotor system loads, wing forces and moments, and wing surface pressures

    Aerodynamic Effects of an Attitude Control Vane on a Tilt-Nacelle V/STOL Propulsion System

    No full text

    A Small-Scale Tiltrotor Model Operating in Descending Flight

    No full text
    As a rotor s descent velocity in low speed flight approaches the induced wake velocity, a vortex ring is formed around the circumference of the rotor disk causing the flow to become very unsteady. This condition is known as Vortex Ring State (VRS). The aerodynamic Characteristics of edgewise operating rotors in this VRS induced environment have been studied for many years. In the 1960 s, two propellers were tested in vertical or near vertical descent, indicating a loss in thrust in the region of VRS. Thrust fluctuations of both single and tandem rotor configurations while operating in VRS were reported. More recently, the effects of descending flight on a single rotor operating in close proximity to a physical image plane, simulating the effects of a twin rotor tiltrotor system were investigated. Mean rotor thrust reductions and thrust fluctuations were shown in VRS. Results indicated the need to acquire additional data with a two-rotor model and the need to investigate the use of a single rotor/image plane apparatus to identify the characteristics of a two-rotor flowfield. As a result a small-scale tiltrotor model with 2-b1adedy untwisted, teetering rotors was tested at various states of descent and sideslip. Dual-rotor, single-rotor with image plane, and isolated-rotor results were reported, suggesting the single-rotor with image plane configuration may not properly capture the aerodynamic nature of a dual-rotor vehicle. Recommendations included additional testing of a model that better represents the physical characteristics of a tiltrotor aircraft. Specific recommendations for model improvements included using three-bladed rotors, twisted blades, a tiltrotor fuselage and wings
    corecore