855 research outputs found

    The Potential of Epigallocatechin Gallate (EGCG) in Targeting Autophagy for Cancer Treatment: A Narrative Review

    Get PDF
    Autophagy is an evolutionarily conserved process for the degradation of redundant or damaged cellular material by means of a lysosome‐dependent mechanism, contributing to cell homeostasis and survival. Autophagy plays a multifaceted and context‐dependent role in cancer initiation, maintenance, and progression; it has a tumor suppressive role in the absence of disease and is upregulated in cancer cells to meet their elevated metabolic demands. Autophagy represents a promising but challenging target in cancer treatment. Green tea is a widely used beverage with healthy effects on several diseases, including cancer. The bioactive compounds of green tea are mainly catechins, and epigallocatechin‐gallate (EGCG) is the most abundant and biologically active among them. In this review, evidence of autophagy modulation and anti‐cancer effects induced by EGCG treatment in experimental cancer models is presented. Reviewed articles reveal that EGCG promotes cytotoxic autophagy often through the inactivation of PI3K/Akt/mTOR pathway, resulting in apoptosis induction. EGCG pro‐oxidant activity has been postulated to be responsible for its anti‐cancer effects. In combination therapy with a chemotherapy drug, EGCG inhibits cell growth and the drug‐induced pro‐survival autophagy. The selected studies rightly claim EGCG as a valuable agent in cancer chemoprevention

    X-ray computed tomography applied to investigate ancient manuscripts

    Get PDF
    I will describe in this paper the first results of a series of X-ray tomography applications, with different system setups, running on some ancient manuscripts containing iron-gall ink. The purpose is to verify the optimum measurement conditions with a laboratory instrumentation —that is also in fact portable— in order to recognize the text from the inside of the documents, without opening them. This becomes possible by exploiting the X-rays absorption contrast of ironbased ink and the three-dimensional reconstruction potential provided by computed tomography that overcomes problems that appear in simple radiograph practice. This work is part of a larger project of EPFL (Ecole Polytechnique F´ed´erale de Lausanne, Switzerland), the “Venice Time Machine” project (EPEL, Digital Heritage Venice, http://dhvenice.eu/, 2015) aimed at digitizing, transcribing and sharing in an open database all the information of the State Archives of Venice, exploiting traditional digitization technologies and innovative methods of acquisition. In this first measurement campaign I investigated a manuscript of the seventeenth century made of a folded sheet; a couple of unopened ancient wills kept in the State Archives in Venice and a handwritten book of several hundred pages of notes of Physics of the nineteenth century

    X-Ray Computed Tomography In Situ: An Opportunity for Museums and Restoration Laboratories

    Get PDF
    X-ray Computed Tomography (X-ray CT) is a sophisticated non-destructive imaging technique to investigate structures and materials of complex objects, and its application can answer many conservation and restoration questions. However, for Cultural Heritage investigations, medical CT scanners are not optimized for many case-studies: These instruments are designed for the human body, are not flexible and are difficult to use in situ. To overcome these limitations and to safely investigate works of art on site\u2014in a restoration laboratory or in a museum\u2014the X-ray Tomography Laboratory of the University of Bologna designed several CT systems. Here we present two of these facilities and the results of important measurement campaigns performed in situ. The first instrument, light and flexible, is designed to investigate medium-size objects with a resolution of a few tens of microns and was used for the CT analysis of several Japanese theater masks belonging to the collection of the \u201cL. Pigorini\u201d Museum (Rome). The second is designed to analyze larger objects, up to 200 cm and was used to investigate the collection of the so-called \u201cStatue Vestite\u201d (devotional dressed statues) of the Diocesan Museum of Massa

    A 3D journey on virtual surfaces and inner structure of ossa genitalia in Primates by means of a non-invasive imaging tool

    Get PDF
    Novel bio-imaging techniques such as micro-Computed Tomography provide an opportunity to investigate animal anatomy and morphology by overcoming limitations imposed by traditional anatomical drawings. The primate genital bones are complex anatomical structures whose occurrence in both male penis (baculum) and female clitoris (baubellum) may be difficult to assess in individual cadavers. We tested a 3-step methodological protocol, including different techniques ranging from inexpensive/simple to more expensive/sophisticated ones, by applying it to a sample of primate species, and resulting in different levels of data complexity: (1) presence/absence manual palpation method; (2) 2D X-ray plates; 3) 3D micro-CT scans. Manual palpation failed on 2 out of 23 specimens by detecting 1 false negative and 1 false positive; radiography failed once confirming the false positive, however firmly disproved by micro-CT; micro-CT analysis reported the presence of 9 bacula out of 11 male specimens and 1 baubellum out of 12 female specimens. A different baculum position was identified between strepsirrhine and haplorrhine species. We also aim to assess micro-CT as a non-invasive technique providing updated anatomical descriptions of primate ossa genitalia. Micro-CT 3D volumes showed the surface of some bones as rough, with a jagged appearance, whereas in others the surface appeared very smooth and coherent. In addition, four main types of bone internal structure were identified: 1) totally hollow; 2) hollow epiphyses and solid diaphysis with few or several channels inside; 3) totally solid with intricate Haversian channels; 4) totally solid with some channels (structure of single baubellum scanned). Ossa genitalia appeared as a living tissue having its own Haversian-like channels. The high resolution of micro-CT 3D-images of primate genital bones disclosed additional form variability to that available from genital bone 2D images of previous studies, and showed for the first time new internal and external morphological characters. Moreover, micro-CT non-invasive approach proved appropriate to recover much of scientific knowledge still hidden and often neglected in both museum specimens and primate cadavers only destined to necropsy
    corecore