5 research outputs found

    Direct and high-throughput assays for human cell killing through trogocytosis by Entamoeba histolytica

    No full text
    Entamoeba histolytica is the causative agent of amoebiasis. Pathogenesis is associated with profound damage to human tissues. We previously showed that amoebae kill human cells through trogocytosis. Trogocytosis is likely to underlie tissue damage during infection, although the mechanism is still unknown. Trogocytosis is difficult to assay quantitatively, which makes it difficult to study. Here, we developed two new, complementary assays to measure trogocytosis by quantifying human cell death. One assay uses CellTiterGlo, a luminescent readout for ATP, as a proxy for cell death. We found that the CellTiterGlo could be used to detect death of human cells after co-incubation with amoebae, and that it was sensitive to inhibition of actin or the amoeba surface Gal/GalNAc lectin, two conditions that are known to inhibit amoebic trogocytosis. The other assay uses two fluorescent nuclear stains to directly differentiate live and dead human cells by microscopy, and is also sensitive to inhibition of amoebic trogocytosis through interference with actin. Both assays are simple and inexpensive, can be used with suspension and adherent human cell types, and are amenable to high-throughput approaches. These new assays are tools to improve understanding of trogocytosis and amoebiasis pathogenesis

    Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity

    No full text
    Stomata, epidermal valves facilitating plant-atmosphere gas exchange, represent a powerful model for understanding cell fate and pattern in plants. Core basic helix-loop-helix (bHLH) transcription factors regulating stomatal development were identified in Arabidopsis, but this dicot's developmental pattern and stomatal morphology represent only one of many possibilities in nature. Here, using unbiased forward genetic screens, followed by analysis of reporters and engineered mutants, we show that stomatal initiation in the grass Brachypodium distachyon uses orthologs of stomatal regulators known from Arabidopsis but that the function and behavior of individual genes, the relationships among genes, and the regulation of their protein products have diverged. Our results highlight ways in which a kernel of conserved genes may be alternatively wired to produce diversity in patterning and morphology and suggest that the stomatal transcription factor module is a prime target for breeding or genome modification to improve plant productivity

    Establishment of quantitative RNAi-based forward genetics in Entamoeba histolytica and identification of genes required for growth

    No full text
    While Entamoeba histolytica remains a globally important pathogen, it is dramatically understudied. The tractability of E. histolytica has historically been limited, which is largely due to challenging features of its genome. To enable forward genetics, we constructed and validated the first genome-wide E. histolytica RNAi knockdown mutant library. This library allows for Illumina deep sequencing analysis for quantitative identification of mutants that are enriched or depleted after selection. We developed a novel analysis pipeline to precisely define and quantify gene fragments. We used the library to perform the first RNAi screen in E. histolytica and identified slow growth (SG) mutants. Among genes targeted in SG mutants, many had annotated functions consistent with roles in cellular growth or metabolic pathways. Some targeted genes were annotated as hypothetical or lacked annotated domains, supporting the power of forward genetics in uncovering functional information that cannot be gleaned from databases. While the localization of neither of the proteins targeted in SG1 nor SG2 mutants could be predicted by sequence analysis, we showed experimentally that SG1 localized to the cytoplasm and cell surface, while SG2 localized to the cytoplasm. Overexpression of SG1 led to increased growth, while expression of a truncation mutant did not lead to increased growth, and thus aided in defining functional domains in this protein. Finally, in addition to establishing forward genetics, we uncovered new details of the unusual E. histolytica RNAi pathway. These studies dramatically improve the tractability of E. histolytica and open up the possibility of applying genetics to improve understanding of this important pathogen
    corecore