253 research outputs found
Phase transitions in spin-orbital coupled model for pyroxene titanium oxides
We study the competing phases and the phase transition phenomena in an
effective spin-orbital coupled model derived for pyroxene titanium oxides
ATiSi2O6 (A=Na, Li). Using the mean-field-type analysis and the numerical
quantum transfer matrix method, we show that the model exhibits two different
ordered states, the spin-dimer and orbital-ferro state and the spin-ferro and
orbital-antiferro state. The transition between two phases is driven by the
relative strength of the Hund's-rule coupling to the onsite Coulomb repulsion
and/or by the external magnetic field. The ground-state phase diagram is
determined. There is a keen competition between orbital and spin degrees of
freedom in the multicritical regime, which causes large fluctuations and
significantly affects finite-temperature properties in the paramagnetic phase.Comment: 4 pages, 6 figures, proceedings submitted to SPQS200
A study to assess COPD Symptom-based Management and to Optimise treatment Strategy in Japan (COSMOS-J) based on GOLD 2011
Background and objective: The Global initiative for chronic Obstructive Lung Disease(GOLD) Committee has proposed a chronic obstructive pulmonary disease (COPD) assessment framework focused on symptoms and on exacerbation risk. This study will evaluate a symptom and exacerbation risk-based treatment strategy based on GOLD in a real-world setting in Japan. Optimal management of COPD will be determined by assessing symptoms using the COPD Assessment Test (CAT) and by assessing the frequency of exacerbations.
Methods: This study (ClinicalTrials.gov identifier: NCT01762800) is a 24-week, multicenter, randomized, double-blind, double-dummy, parallel-group study. It aims to recruit 400 patients with moderate-to-severe COPD. Patients will be randomized to receive treatment with either
salmeterol/fluticasone propionate (SFC) 50/250μg twice daily or with tiotropium bromide 18μg once daily. Optimal management of patients will be assessed at four-weekly intervals and, if patients remain symptomatic, as measured using the CAT, or experience an exacerbation, they
have the option to step up to treatment with both drugs, ie, SFC twice daily and tiotropium once daily (TRIPLE therapy). The primary endpoint of the study will be the proportion of patients who are able to remain on the randomized therapy.
Results: No data are available. This paper summarizes the methodology of the study in advance of the study starting.
Conclusion: The results of this study will help physicians to understand whether TRIPLE therapy is more effective than either treatment strategy alone in controlling symptoms and exacerbations in patients with moderate-to-severe COPD. It will also help physicians to understand the GOLD recommendation work in Japan
Thermodynamics of the anisotropic Heisenberg chain calculated by the density matrix renormalization group method
The density matrix renormalization group (DMRG) method is applied to the
anisotropic Heisenberg chain at finite temperatures. The free energy of the
system is obtained using the quantum transfer matrix which is iteratively
enlarged in the imaginary time direction. The magnetic susceptibility and the
specific heat are calculated down to T=0.01J and compared with the Bethe ansatz
results. The agreement including the logarithmic correction in the magnetic
susceptibility at the isotropic point is fairly good.Comment: 4 pages, 3 Postscript figures, REVTeX, to appear in J. Phys. Soc.
Jpn. Vol.66 No.8 (1997
In-gap state and effect of light illumination in CuIrS probed by photoemission spectroscopy
We have studied disorder-induced in-gap states and effect of light
illumination in the insulating phase of spinel-type CuIrS using
ultra-violet photoemission spectroscopy (UPS). The Ir/Ir
charge-ordered gap appears below the metal-insulator transition temperature.
However, in the insulating phase, in-gap spectral features with are
observed in UPS just below the Fermi level (), corresponding to the
variable range hopping transport observed in resistivity. The spectral weight
at is not increased by light illumination, indicating that the
Ir-Ir dimer is very robust although the long-range octamer order
would be destructed by the photo-excitation. Present results suggest that the
Ir-Ir bipolaronic hopping and disorder effects are responsible
for the conductivity of CuIrS.Comment: 14 pages, 5 figure
The Free Energy and the Scaling Function of the Ferromagnetic Heisenberg Chain in a Magnetic Field
A nonlinear susceptibilities (the third derivative of a magnetization
by a magnetic field ) of the =1/2 ferromagnetic Heisenberg chain and the
classical Heisenberg chain are calculated at low temperatures In both
chains the nonlinear susceptibilities diverge as and a linear
susceptibilities diverge as The arbitrary spin Heisenberg
ferromagnet has a scaling relation between and
The scaling function
=(2/3)-(44/135) + O() is common to all values of spin
Comment: 16 pages (revtex 2.0) + 6 PS figures upon reques
Efficiency of symmetric targeting for finite-T DMRG
Two targeting schemes have been known for the density matrix renormalization
group (DMRG) applied to non-Hermitian problems; one uses an asymmetric density
matrix and the other uses symmetric density matrix. We compare the numerical
efficiency of these two targeting schemes when they are used for the finite
temperature DMRG.Comment: 4 pages, 3 Postscript figures, REVTe
Finite-temperature phase transitions in quasi-one-dimensional molecular conductors
Phase transitions in 1/4-filled quasi-one-dimensional molecular conductors
are studied theoretically on the basis of extended Hubbard chains including
electron-lattice interactions coupled by interchain Coulomb repulsion. We apply
the numerical quantum transfer-matrix method to an effective one-dimensional
model, treating the interchain term within mean-field approximation.
Finite-temperature properties are investigated for the charge ordering, the
"dimer Mott" transition (bond dimerization), and the spin-Peierls transition
(bond tetramerization). A coexistent state of charge order and bond
dimerization exhibiting dielectricity is predicted in a certain parameter
range, even when intrinsic dimerization is absent.Comment: to be published in J. Phys. Soc. Jpn., Vol. 76 (2007) No. 1 (5 pages,
4 figures); typo correcte
Thermodynamics of doped Kondo insulator in one dimension: Finite Temperature DMRG Study
The finite-temperature density-matrix renormalization-group method is applied
to the one-dimensional Kondo lattice model near half filling to study its
thermodynamics. The spin and charge susceptibilities and entropy are calculated
down to T=0.03t. We find two crossover temperatures near half filling. The
higher crossover temperature continuously connects to the spin gap at half
filling, and the susceptibilities are suppressed around this temperature. At
low temperatures, the susceptibilities increase again with decreasing
temperature when doping is finite. We confirm that they finally approach to the
values obtained in the Tomonaga-Luttinger (TL) liquid ground state for several
parameters. The crossover temperature to the TL liquid is a new energy scale
determined by gapless excitations of the TL liquid. The transition from the
metallic phase to the insulating phase is accompanied by the vanishing of the
lower crossover temperature.Comment: 4 pages, 7 Postscript figures, REVTe
Combination of Ferromagnetic and Antiferromagnetic Features in Heisenberg Ferrimagnets
We investigate the thermodynamic properties of Heisenberg ferrimagnetic
mixed-spin chains both numerically and analytically with particular emphasis on
the combination of ferromagnetic and antiferromagnetic features. Employing a
new density-matrix renormalization-group technique as well as a quantum Monte
Carlo method, we reveal the overall thermal behavior: At very low temperatures,
the specific heat and the magnetic susceptibility times temperature behave like
and , respectively, whereas at intermediate temperatures,
they exhibit a Schottky-like peak and a minimum, respectively. Developing the
modified spin-wave theory, we complement the numerical findings and give a
precise estimate of the low-temperature behavior.Comment: 9 pages, 9 postscript figures, RevTe
Enhanced autophagy and phagocytosis of apoptotic lymphocytes in splenic macrophages of acute ethanol-treated rats: Light and electron microscopic studies
Autophagy is a prosurvival mechanism for the clearance of damaged cellular components, specifically upon exposure to various stressors. In lymphoid organs, excessive ethanol consumption increases lymphocyte apoptosis, resulting in immunosuppression. However, ethanol-induced autophagy and related phagocytosis of apoptotic lymphocytes in the spleen have not been studied yet. Adult male Wistar rats were injected intraperitoneally either with 5 g/kg ethanol or phosphate-buffered saline (as a control group) and then sacrificed 0, 3, 6, and 24 hours after injection. Light and transmission electron microscopy (TEM) findings indicated enhanced T cell apoptosis in the white pulps of ethanol-treated rats (ETRs) compared with the control group, which peaked at 6 h and was associated with the accumulation of tingible body macrophages (TBMs). These macrophages exhibited an upregulated autophagic response, as evidenced by enhanced LC3-II (a specific marker of autophagosomes) expression, which peaked at 24h. In addition, double labeling immunofluorescence of LC3-II with lysosomal markers revealed the enhanced formation of autolysosomes in TBMs of ETRs, which was associated with suppression of p62 immunostaining, indicating the enhanced autophagic flux. Interestingly, this elevated autophagic response in ETR TBMs was accompanied by evidence of LC3-associated phagocytosis (LAP) of apoptotic splenocytes. This is based on TUNEL/LC3-II double labeling and TEM observations of phagosomes containing apoptotic bodies, enclosed within phagosomal membranes adjacent to the autophagic vacuoles. It can be concluded that enhanced prosurvival autophagy in splenic TBMs of ETRs and clearing of apoptotic lymphocytes via LAP may contribute to preventing secondary necrosis and autoimmune diseases
- …