3,943 research outputs found

    Quark-Gluon Jet Differences at LEP

    Full text link
    A new method to identify the gluon jet in 3-jet ``{\bf Y}'' decays of Z0Z^0 is presented. The method is based on differences in particle multiplicity between quark jets and gluon jets, and is more effective than tagging by leptonic decay. An experimental test of the method and its application to a study of the ``string effect'' are proposed. Various jet-finding schemes for 3-jet events are compared.Comment: 11 pages, LaTeX, 4 PostScript figures availble from the author ([email protected]), MSUTH-92-0

    In search of the QCD-Gravity correspondence

    Full text link
    Quantum Chromodynamics (QCD) is the fundamental theory of strong interactions. It describes the behavior of quarks and gluons which are the smallest known constituents of nuclear matter. The difficulties in solving the theory at low energies in the strongly interacting, non-perturbative regime have left unanswered many important questions in QCD, such as the nature of confinement or the mechanism of hadronization. In these lectures oriented towards the students we introduce two classes of dualities that attempt to reproduce many of the features of QCD, while making the treatment at strong coupling more tractable: (1) the AdS/CFT correspondence between a specific class of string theories and a conformal field theory and (2) an effective low-energy theory of QCD dual to classical QCD on a curved conformal gravitational background. The hope is that by applying these dualities to the evaluation of various properties of the strongly-interacting matter produced in heavy ion collisions one can understand how QCD behaves at strong coupling. We give an outline of the applications, with emphasis on two transport coefficients of QCD matter -- shear and bulk viscosities.Comment: 31 pages, 7 figures; Lectures delivered by D. Kharzeev at the International QGP Winter School, Jaipur, India, February 1-3, 200

    Anthropic solution to the magnetic muon anomaly: the charged see-saw

    Full text link
    We present models of new physics that can explain the muon g-2 anomaly in accord with with the assumption that the only scalar existing at the weak scale is the Higgs, as suggested by anthropic selection. Such models are dubbed "charged see-saw" because the muon mass term is mediated by heavy leptons. The electroweak contribution to the g-2 gets modified by order one factors, giving an anomaly of the same order as the observed hint, which is strongly correlated with a modification of the Higgs coupling to the muon.Comment: 21 pages, many equations despite the first word in the title. v3: loop function G_WN corrected, conclusions unchange

    The longitudinal structure function F_L: perturbative QCD and k_T-factorization versus experimental data at fixed W

    Full text link
    We use results for the structure functions FLF_L for a gluon target having nonzero transverse momentum square at order αs\alpha_s, obtained in our previous paper, to compare with recent H1 experimental data for FLF_L at fixwd W values and with collinear GRV predictions at LO and NLO approximation.Comment: 10 pages, 4 figure

    Monte Carlo simulation for jet fragmentation in SUSY-QCD

    Get PDF
    We present results from a new Monte Carlo simulation for jet fragmentation in QCD and SUSY QCD for large primary energies s\sqrt s up to 101610^{16} GeV. In the case of SUSY QCD the simulation takes into account not only gluons and quarks as cascading particles, but also their supersymmetric partners. A new model-independent hadronization scheme is developed, in which the hadronization functions are found from LEP data. An interesting feature of SUSY QCD is the prediction of a sizeable flux of the lightest supersymmetric particles (LSPs), if R-parity is conserved. About 10% of the jet energy is transferred to LSPs which, owing to their harder spectra, constitute an important part of the spectra for large x=E/Ejetx=E/E_{jet}. Spectra of protons and of secondary particles, photons and neutrinos, are also calculated. These results have implications for the decay of superheavy particles with masses up to the GUT scale, which have been suggested as a source of ultrahigh energy cosmic rays.Comment: latex, 25 pages with 17 eps figure

    Exclusive processes in position space and the pion distribution amplitude

    Get PDF
    We suggest to carry out lattice calculations of current correlators in position space, sandwiched between the vacuum and a hadron state (e.g. pion), in order to access hadronic light-cone distribution amplitudes (DAs). In this way the renormalization problem for composite lattice operators is avoided altogether, and the connection to the DA is done using perturbation theory in the continuum. As an example, the correlation function of two electromagnetic currents is calculated to the next-to-next-to-leading order accuracy in perturbation theory and including the twist-4 corrections. We argue that this strategy is fully competitive with direct lattice measurements of the moments of the DA, defined as matrix elements of local operators, and offers new insight in the space-time picture of hard exclusive reactions.Comment: 15 pages, 10 figure

    Spread Supersymmetry

    Full text link
    In the multiverse the scale of SUSY breaking, \tilde{m} = F_X/M_*, may scan and environmental constraints on the dark matter density may exclude a large range of \tilde{m} from the reheating temperature after inflation down to values that yield a LSP mass of order a TeV. After selection effects, the distribution for \tilde{m} may prefer larger values. A single environmental constraint from dark matter can then lead to multi-component dark matter, including both axions and the LSP, giving a TeV-scale LSP lighter than the corresponding value for single-component LSP dark matter. If SUSY breaking is mediated to the SM sector at order X^* X, only squarks, sleptons and one Higgs doublet acquire masses of order \tilde{m}. The gravitino mass is lighter by a factor of M_*/M_Pl and the gaugino masses are suppressed by a further loop factor. This Spread SUSY spectrum has two versions; the Higgsino masses are generated in one from supergravity giving a wino LSP and in the other radiatively giving a Higgsino LSP. The environmental restriction on dark matter fixes the LSP mass to the TeV domain, so that the squark and slepton masses are order 10^3 TeV and 10^6 TeV in these two schemes. We study the spectrum, dark matter and collider signals of these two versions of Spread SUSY. The Higgs is SM-like and lighter than 145 GeV; monochromatic photons in cosmic rays arise from dark matter annihilations in the halo; exotic short charged tracks occur at the LHC, at least for the wino LSP; and there are the eventual possibilities of direct detection of dark matter and detailed exploration of the TeV-scale states at a future linear collider. Gauge coupling unification is as in minimal SUSY theories. If SUSY breaking is mediated at order X, a much less hierarchical spectrum results---similar to that of the MSSM, but with the superpartner masses 1--2 orders of magnitude larger than in natural theories.Comment: 20 pages, 5 figure

    Low-Energy Supersymmetry and the Tevatron Bottom-Quark Cross Section

    Get PDF
    A long-standing discrepancy between the bottom-quark production cross section and predictions of perturbative quantum chromodynamics is addressed. We show that pair production of light gluinos, of mass 12 to 16 GeV, with two-body decays into bottom quarks and light bottom squarks, yields a bottom-quark production rate in agreement with hadron collider data. We examine constraints on this scenario from low-energy data and make predictions that may be tested at the next run of the Fermilab Tevatron Collider.Comment: Version in Phys. Rev. Lett., 4 pp., 1 ps fig., uses RevTeX, added why moderate gluino masses are not ruled out, updated reference

    Standard Model Higgs-Boson Branching Ratios with Uncertainties

    Get PDF
    We present an update of the branching ratios for Higgs-boson decays in the Standard Model. We list results for all relevant branching ratios together with corresponding uncertainties resulting from input parameters and missing higher-order corrections. As sources of parametric uncertainties we include the masses of the charm, bottom, and top quarks as well as the QCD coupling constant. We compare our results with other predictions in the literature.Comment: 32 pages, 4 figures, contribution to LHC Higgs Cross Section Working Group https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections, theoretical uncertainties for H->\mu\mu{} added, version to appear in European Physical Journal
    corecore