65 research outputs found

    Phase equilibria of advanced technology uranium silicide-based nuclear fuel

    Get PDF
    The phases in uranium-silicide binary system were evaluated in regards to their stabilities, phase boundaries, crystal structures, and phase transitions. The results from this study were used in combination with a well assessed literature to optimize the U-Si phase diagram using the CALPHAD method. A thermodynamic database was developed, which could be used to guide nuclear fuel fabrication, could be incorporated into other nuclear fuel thermodynamic databases, or could be used to generate data required by fuel performance codes to model fuel behavior in normal or off-normal reactor operations. The U3Si2 and U3Si5 phases were modeled using the Compound Energy Formalism model with 3 sublattices to account for the variation in composition. The crystal structure used for the USi phase was the tetragonal with an I4/mmm space. Above 450°C, the U3Si5 phase was modeled. The composition of the USi2 phase was adjusted to USi1.84. The calculated invariant reactions and the enthalpy of formation for the stoichiometric phases were in agreement with experimental data

    Deep Burn Develpment of Transuranic Fuel for High-Temperature Helium-Cooled Reactors - July 2010

    Full text link
    The DB Program Quarterly Progress Report for April - June 2010, ORNL/TM/2010/140, was distributed to program participants on August 4. This report discusses the following: (1) TRU (transuranic elements) HTR (high temperature helium-cooled reactor) Fuel Modeling - (a) Thermochemical Modeling, (b) 5.3 Radiation Damage and Properties; (2) TRU HTR Fuel Qualification - (a) TRU Kernel Development, (b) Coating Development, (c) ZrC Properties and Handbook; and (3) HTR Fuel Recycle - (a) Recycle Processes, (b) Graphite Recycle, (c) Pyrochemical Reprocessing - METROX (metal recovery from oxide fuel) Process Development

    Deep Burn: Development of Transuranic Fuel for High-Temperature Helium-Cooled Reactors- Monthly Highlights November 2010

    Full text link
    During FY 2011 the DB Program will report Highlights on a monthly basis, but will no longer produce Quarterly Progress Reports. Technical details that were previously included in the quarterly reports will be included in the appropriate Milestone Reports that are submitted to FCRD Program Management. These reports will also be uploaded to the Deep Burn website. The Monthly Highlights report for October 2010, ORNL/TM-2010/300, was distributed to program participants on November 29, 2010. This report discusses the following: (1) Thermochemical Data and Model Development; (2) TRU (transuranic elements) TRISO (tri-structural isotropic) Development - (a) TRU Kernel Development, (b) Coating Development; (3) LWR Fully Ceramic Fuel - (a) FCM Fabrication Development, (b) FCM Irradiation Testing

    Coated Particle Fuel and Deep Burn Program Monthly Highlights April 2011

    Full text link
    The baseline change proposal BCP-FCRD-11026 submitted to change the due date for M21AF080202 'Demonstrate fabrication of Transuranic kernels of Plutonium-239/3.5at%Neptunium-237 using newly installed glove box facilities in ORNL 7930 hot cell complex' from 4/25/11 to 3/30/12 was approved this month. During FY 2011 the CP & DB Program will report Highlights on a monthly basis, but will no longer produce Quarterly Progress Reports. Technical details that were previously included in the quarterly reports will be included in the appropriate Milestone Reports that are submitted to FCRD Program Management. These reports will also be uploaded to the Deep Burn website. The Monthly Highlights report for March 2011, ORNL/TM-2011/96, was distributed to program participants on April 8, 2011. As reported previously, the final Quarterly for FY 2010, Deep Burn Program Quarterly Report for July - September 2010, ORNL/TM-2010/301, was announced to program participants and posted to the website on December 28, 2010. This report discusses the following: (1) Thermochemical Data and Model Development - (a) Thermochemical Modeling, (b) Thermomechanical Behavior, (c) Actinide and Fission Product Transport, (d) Radiation Damage and Properties; (2) TRU (transuranic elements) TRISO (tri-structural isotropic) Development - (a) TRU Kernel Development, (b) Coating Development; (3) Advanced TRISO Applications - Metal Matrix Fuels for LWR; (4) LWR Fully Ceramic Fuel - (a) FCM Fabrication Development, (b) FCM Irradiation Testing; (5) Fuel Performance and Analytical Analysis - Fuel Performance Modeling; and (6) ZrC Properties and Handbook - Properties of ZrC

    Deep Burn: Development of Transuranic Fuel for High-Temperature Helium-Cooled Reactors- Monthly Highlights September 2010

    Full text link
    The DB Program monthly highlights report for August 2010, ORNL/TM-2010/184, was distributed to program participants by email on September 17. This report discusses: (1) Core and Fuel Analysis - (a) Core Design Optimization in the HTR (high temperature helium-cooled reactor) Prismatic Design (Logos), (b) Core Design Optimization in the HTR Pebble Bed Design (INL), (c) Microfuel analysis for the DB HTR (INL, GA, Logos); (2) Spent Fuel Management - (a) TRISO (tri-structural isotropic) repository behavior (UNLV), (b) Repository performance of TRISO fuel (UCB); (3) Fuel Cycle Integration of the HTR (high temperature helium-cooled reactor) - Synergy with other reactor fuel cycles (GA, Logos); (4) TRU (transuranic elements) HTR Fuel Qualification - (a) Thermochemical Modeling, (b) Actinide and Fission Product Transport, (c) Radiation Damage and Properties; (5) HTR Spent Fuel Recycle - (a) TRU Kernel Development (ORNL), (b) Coating Development (ORNL), (c) Characterization Development and Support, (d) ZrC Properties and Handbook; and (6) HTR Fuel Recycle - (a) Graphite Recycle (ORNL), (b) Aqueous Reprocessing, (c) Pyrochemical Reprocessing METROX (metal recovery from oxide fuel) Process Development (ANL)

    Communication: First-Principles Evaluation of Alkali Ion Adsorption and Ion Exchange in Pure Silica Lta Zeolite (Vol 149, 131102, 2018)

    Get PDF
    Using first-principles calculations, we studied the adsorption of alkali ions in pure silica Linde Type A (LTA) zeolite. The probability of adsorbing alkali ions from solution and the driving force for ion exchange between Na+ and other alkali ions at the different adsorption sites were analyzed. From the calculated ion exchange isotherms, we show that it is possible to exchange Na+ with K+ and Rb+ in water, but that is not the case for systems in a vacuum. We also demonstrate that a solvation model should be used for the accurate representation of ion exchange in an LTA and that dispersion interactions should be introduced with care

    COIVF-9 %Ob 6Y-- N EAR-N ET-SHAPE FABRICATION BY FORCED-FLOW, THERMAL-G RAD1 ENT CVI*

    Get PDF
    Forced-flow, thermal gradient chemical vapor infiltration (FCVI) has been developed for the rapid densification of ceramic matrix composites. For preforms of >3 mm thickness FCVl can produce a near-net-shape part in less than one day as opposed to isothermal, isobaric CVI which requires several weeks to densify such a component. Efforts at ORNL and elsewhere have resulted in capability to produce prototypical thick-walled heat exchanger tubes and turbine disk blanks. This paper will review recent modeling and experimental efforts related to the FCVl of cylindrical forms
    • …
    corecore