10,861 research outputs found

    Smoothed Affine Wigner Transform

    Get PDF
    We study a generalization of Husimi function in the context of wavelets. This leads to a nonnegative density on phase-space for which we compute the evolution equation corresponding to a Schr\"Aodinger equation

    Multifractal wave functions of simple quantum maps

    Full text link
    We study numerically multifractal properties of two models of one-dimensional quantum maps, a map with pseudointegrable dynamics and intermediate spectral statistics, and a map with an Anderson-like transition recently implemented with cold atoms. Using extensive numerical simulations, we compute the multifractal exponents of quantum wave functions and study their properties, with the help of two different numerical methods used for classical multifractal systems (box-counting method and wavelet method). We compare the results of the two methods over a wide range of values. We show that the wave functions of the Anderson map display a multifractal behavior similar to eigenfunctions of the three-dimensional Anderson transition but of a weaker type. Wave functions of the intermediate map share some common properties with eigenfunctions at the Anderson transition (two sets of multifractal exponents, with similar asymptotic behavior), but other properties are markedly different (large linear regime for multifractal exponents even for strong multifractality, different distributions of moments of wave functions, absence of symmetry of the exponents). Our results thus indicate that the intermediate map presents original properties, different from certain characteristics of the Anderson transition derived from the nonlinear sigma model. We also discuss the importance of finite-size effects.Comment: 15 pages, 21 figure

    Mean-field magnetization relaxation in conducting ferromagnets

    Full text link
    Collective ferromagnetic motion in a conducting medium is damped by the transfer of the magnetic moment and energy to the itinerant carriers. We present a calculation of the corresponding magnetization relaxation as a linear-response problem for the carrier dynamics in the effective exchange field of the ferromagnet. In electron systems with little intrinsic spin-orbit interaction, a uniform magnetization motion can be formally eliminated by going into the rotating frame of reference for the spin dynamics. The ferromagnetic damping in this case grows linearly with the spin-flip rate when the latter is smaller than the exchange field and is inversely proportional to the spin-flip rate in the opposite limit. These two regimes are analogous to the "spin-pumping" and the "breathing Fermi-surface" damping mechanisms, respectively. In diluted ferromagnetic semiconductors, the hole-mediated magnetization can be efficiently relaxed to the itinerant-carrier degrees of freedom due to the strong spin-orbit interaction in the valence bands.Comment: 4 pages, 1 figur

    Modeling growing confluent tissues using a lattice Boltzmann method: interface stability and fluctuations

    Get PDF
    Tissue growth underpins a wide array of biological and developmental processes, and numerical modeling of growing systems has been shown to be a useful tool for understanding these processes. However, the phenomena that can be captured are often limited by the size of systems that can be modeled. Here, we address this limitation by introducing a lattice Boltzmann method (LBM) for a growing system that is able to efficiently model hydrodynamic length scales. The model incorporates a bounce-back approach to describing the growing front of a tissue, which we use to investigate the dynamics of the interface of growing model tissues. We find that the interface grows with scaling in agreement with the Kardar-Parisi-Zhang (KPZ) universality class when growth in the system is bulk driven. Interestingly, we also find the emergence of a previously unreported hydrodynamic instability when proliferation is restricted to the tissue edge. We then develop an analytical theory to show that the instability arises due to a coupling between the number of cells actively proliferating and the position of the interface

    Bounded Determinization of Timed Automata with Silent Transitions

    Full text link
    Deterministic timed automata are strictly less expressive than their non-deterministic counterparts, which are again less expressive than those with silent transitions. As a consequence, timed automata are in general non-determinizable. This is unfortunate since deterministic automata play a major role in model-based testing, observability and implementability. However, by bounding the length of the traces in the automaton, effective determinization becomes possible. We propose a novel procedure for bounded determinization of timed automata. The procedure unfolds the automata to bounded trees, removes all silent transitions and determinizes via disjunction of guards. The proposed algorithms are optimized to the bounded setting and thus are more efficient and can handle a larger class of timed automata than the general algorithms. The approach is implemented in a prototype tool and evaluated on several examples. To our best knowledge, this is the first implementation of this type of procedure for timed automata.Comment: 25 page

    Cytochrome spectra of cytoplasmic mutants

    Get PDF
    Cytochrome spectra of cytoplasmic mutant

    Coherent QED, Giant Resonances and (e+e−)(e^{+}e^{-}) Pairs in High Energy Nucleus-Nucleus Collisions

    Get PDF
    We show that the coherent oscillations of the e.m. field induced by the collective quantum fluctuations of the nuclear matter field associated with the giant resonances, with frequencies ωA≃78A−1/3\omega_{A}\simeq 78A^{-{1/3}} MeV, give rise to a significant (e+e−)(e^+e^-) pair production in high energy Heavy Ion collisions. The approximate parameterless calculation of such yield is in good agreement with recent experimental observations.Comment: 27 pages, 13 figure

    Out-of-plane spin polarization from in-plane electric and magnetic fields

    Full text link
    We show that the joint effect of spin-orbit and magnetic fields leads to a spin polarization perpendicular to the plane of a two-dimensional electron system with Rashba spin-orbit coupling and in-plane parallel dc magnetic and electric fields, for angle-dependent impurity scattering or nonparabolic energy spectrum, while only in-plane polarization persists for simplified models. We derive Bloch equations, describing the main features of recent experiments, including the magnetic field dependence of static and dynamic responses.Comment: 5 pages and 1 figure in main text, 5 pages in appendi
    • …
    corecore