1,344 research outputs found
Reverse undercompressive shock structures in driven thin film flow
We show experimental evidence of a new structure involving an
undercompressive and reverse undercompressive shock for draining films driven
by a surface tension gradient against gravity. The reverse undercompressive
shock is unstable to transverse perturbations while the leading
undercompressive shock is stable. Depending on the pinch-off film thickness, as
controlled by the meniscus, either a trailing rarefaction wave or a compressive
shock separates from the reverse undercompressive shock
A Method Based on Total Variation for Network Modularity Optimization using the MBO Scheme
The study of network structure is pervasive in sociology, biology, computer
science, and many other disciplines. One of the most important areas of network
science is the algorithmic detection of cohesive groups of nodes called
"communities". One popular approach to find communities is to maximize a
quality function known as {\em modularity} to achieve some sort of optimal
clustering of nodes. In this paper, we interpret the modularity function from a
novel perspective: we reformulate modularity optimization as a minimization
problem of an energy functional that consists of a total variation term and an
balance term. By employing numerical techniques from image processing
and compressive sensing -- such as convex splitting and the
Merriman-Bence-Osher (MBO) scheme -- we develop a variational algorithm for the
minimization problem. We present our computational results using both synthetic
benchmark networks and real data.Comment: 23 page
Coalescence in low-viscosity liquids
The expected universal dynamics associated with the initial stage of droplet
coalescence are difficult to study visually due to the rapid motion of the
liquid and the awkward viewing geometry. Here we employ an electrical method to
study the coalescence of two inviscid droplets at early times. We measure the
growth dynamics of the bridge connecting the two droplets and observe a new
asymptotic regime inconsistent with previous theoretical predictions. The
measurements are consistent with a model in which the two liquids coalesce with
a slightly deformed interface.Comment: 4 pages and 4 figure
Multiclass Semi-Supervised Learning on Graphs using Ginzburg-Landau Functional Minimization
We present a graph-based variational algorithm for classification of
high-dimensional data, generalizing the binary diffuse interface model to the
case of multiple classes. Motivated by total variation techniques, the method
involves minimizing an energy functional made up of three terms. The first two
terms promote a stepwise continuous classification function with sharp
transitions between classes, while preserving symmetry among the class labels.
The third term is a data fidelity term, allowing us to incorporate prior
information into the model in a semi-supervised framework. The performance of
the algorithm on synthetic data, as well as on the COIL and MNIST benchmark
datasets, is competitive with state-of-the-art graph-based multiclass
segmentation methods.Comment: 16 pages, to appear in Springer's Lecture Notes in Computer Science
volume "Pattern Recognition Applications and Methods 2013", part of series on
Advances in Intelligent and Soft Computin
Multivariate Spatiotemporal Hawkes Processes and Network Reconstruction
There is often latent network structure in spatial and temporal data and the
tools of network analysis can yield fascinating insights into such data. In
this paper, we develop a nonparametric method for network reconstruction from
spatiotemporal data sets using multivariate Hawkes processes. In contrast to
prior work on network reconstruction with point-process models, which has often
focused on exclusively temporal information, our approach uses both temporal
and spatial information and does not assume a specific parametric form of
network dynamics. This leads to an effective way of recovering an underlying
network. We illustrate our approach using both synthetic networks and networks
constructed from real-world data sets (a location-based social media network, a
narrative of crime events, and violent gang crimes). Our results demonstrate
that, in comparison to using only temporal data, our spatiotemporal approach
yields improved network reconstruction, providing a basis for meaningful
subsequent analysis --- such as community structure and motif analysis --- of
the reconstructed networks
- …