56 research outputs found

    Influencers on thyroid cancer onset: molecular genetic basis

    Get PDF
    Thyroid cancer, a cancerous tumor or growth located within the thyroid gland, is the most common endocrine cancer. It is one of the few cancers whereby incidence rates have increased in recent years. It occurs in all age groups, from children through to seniors. Most studies are focused on dissecting its genetic basis, since our current knowledge of the genetic background of the di erent forms of thyroid cancer is far from complete, which poses a challenge for diagnosis and prognosis of the disease. In this review, we describe prevailing advances and update our understanding of the molecular genetics of thyroid cancer, focusing on the main genes related with the pathology, including the di erent noncoding RNAs associated with the disease

    Next-generation-based targeted sequencing as an efficient tool for the study of the genetic background in Hirschsprung patients

    Get PDF
    Background: The development of next-generation sequencing (NGS) technologies has a great impact in the human variation detection given their high-throughput. These techniques are particularly helpful for the evaluation of the genetic background in disorders of complex genetic etiology such as Hirschsprung disease (HSCR). The purpose of this study was the design of a panel of HSCR associated genes as a rapid and efficient tool to perform genetic screening in a series of patients. Methods: We have performed NGS-based targeted sequencing (454-GS Junior) using a panel containing 26 associated or candidate genes for HSCR in a group of 11 selected HSCR patients. Results: The average percentage of covered bases was of 97 %, the 91.4 % of the targeted bases were covered with depth above 20X and the mean coverage was 422X. In addition, we have found a total of 13 new coding variants and 11 new variants within regulatory regions among our patients. These outcomes allowed us to re-evaluate the genetic component associated to HSCR in these patients. Conclusions: Our validated NGS panel constitutes an optimum method for the identification of new variants in our patients. This approach could be used for a fast, reliable and more thorough genetic screening in future series of patients.Instituto de Salud Carlos III (ISCIII)Spanish Ministry of Economy and Competitiveness, Spain (PI13/01560)Consejería de Innovación Ciencia y Empresa de la Junta de Andalucía (CTS-7447)CIBERER is an initiative of the ISCIII, Spanish Ministry of Economy and Competitivenes

    Epigenetic Mechanisms in Hirschsprung Disease

    Get PDF
    Hirschsprung disease (HSCR, OMIM 142623) is due to a failure of enteric precursor cells derived from neural crest (EPCs) to proliferate, migrate, survive or differentiate during Enteric Nervous System (ENS) formation. This is a complex process which requires a strict regulation that results in an ENS specific gene expression pattern. Alterations at this level lead to the onset of neurocristopathies such as HSCR. Gene expression is regulated by different mechanisms, such as DNA modifications (at the epigenetic level), transcriptional mechanisms (transcription factors, silencers, enhancers and repressors), postranscriptional mechanisms (30UTR and ncRNA) and regulation of translation. All these mechanisms are finally implicated in cell signaling to determine the migration, proliferation, differentiation and survival processes for correct ENS development. In this review, we have performed an overview on the role of epigenetic mechanisms at transcriptional and posttranscriptional levels on these cellular events in neural crest cells (NCCs), ENS development, as well as in HSCR.Instituto de Salud Carlos III (ISCIII) PI16/01422Spanish Ministry of Economy and competitiveness PI16/01422European Union PI16/0142

    Combined kinase inhibition modulates parkin inactivation

    Get PDF
    Mutations in the parkin gene cause autosomal-recessive, juvenile-onset parkinsonism, and parkin dysfunction may also play a role in the pathogenesis of sporadic Parkinson disease (PD). Although its precise function remains largely unknown, parkin seems to play a neuroprotective role. Several studies indicate that changes in parkin solubility induced by post-translational modifications, such as S-nitrosylation or dopamine modification, comprise one mechanism of parkin inactivation associated with disease. Protein phosphorylation events have recently been linked to the molecular mechanism(s) underlying PD, but the role of this post-translational modification for parkin function has remained unclear. Here we report that compound phosphorylation of parkin by both casein kinase I and cyclin-dependent kinase 5 (cdk5) decreases parkin solubility, leading to its aggregation and inactivation. Combined kinase inhibition partially reverses the aggregative properties of several pathogenic point mutants in cultured cells. Enhanced parkin phosphorylation is detected in distinct brain areas of individuals with sporadic PD and correlates with increases in the levels of p25, the activator of cdk5. These findings indicate that casein kinase I and cdk5 may represent novel combinatorial therapeutic targets for treating PD

    Mutational Spectrum of Semaphorin 3A and Semaphorin 3D Genes in Spanish Hirschsprung patients

    Get PDF
    Hirschsprung disease (HSCR, OMIM 142623) is a developmental disorder characterized by the absence of ganglion cells along variable lengths of the distal gastrointestinal tract, which results in tonic contraction of the aganglionic colon segment and functional intestinal obstruction. The RET proto-oncogene is the major gene associated to HSCR with differential contributions of its rare and common, coding and noncoding mutations to the multifactorial nature of this pathology. In addition, many other genes have been described to be associated with this pathology, including the semaphorins class III genes SEMA3A (7p12.1) and SEMA3D (7q21.11) through SNP array analyses and by next-generation sequencing technologies. Semaphorins are guidance cues for developing neurons implicated in the axonal projections and in the determination of the migratory pathway for neural-crest derived neural precursors during enteric nervous system development. In addition, it has been described that increased SEMA3A expression may be a risk factor for HSCR through the upregulation of the gene in the aganglionic smooth muscle layer of the colon in HSCR patients. Here we present the results of a comprehensive analysis of SEMA3A and SEMA3D in a series of 200 Spanish HSCR patients by the mutational screening of its coding sequence, which has led to find a number of potentially deleterious variants. RET mutations have been also detected in some of those patients carrying SEMAs variants. We have evaluated the A131T-SEMA3A, S598G-SEMA3A and E198K-SEMA3D mutations using colon tissue sections of these patients by immunohistochemistry. All mutants presented increased protein expression in smooth muscle layer of ganglionic segments. Moreover, A131T-SEMA3A also maintained higher protein levels in the aganglionic muscle layers. These findings strongly suggest that these mutants have a pathogenic effect on the disease. Furthermore, because of their coexistence with RET mutations, our data substantiate the additive genetic model proposed for this rare disorder and further support the association of SEMAs genes with HSCR. © 2013 Luzón-Toro et al.Peer Reviewe

    Comprehensive Analysis of NRG1 Common and Rare Variants in Hirschsprung Patients

    Get PDF
    Hirschsprung disease (HSCR, OMIM 142623) is a developmental disorder characterized by the absence of ganglion cells along variable lengths of the distal gastrointestinal tract, which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. The RET proto-oncogene is the major gene for HSCR with differential contributions of its rare and common, coding and noncoding mutations to the multifactorial nature of this pathology. Many other genes have been described to be associated with the pathology, as NRG1 gene (8p12), encoding neuregulin 1, which is implicated in the development of the enteric nervous system (ENS), and seems to contribute by both common and rare variants. Here we present the results of a comprehensive analysis of the NRG1 gene in the context of the disease in a series of 207 Spanish HSCR patients, by both mutational screening of its coding sequence and evaluation of 3 common tag SNPs as low penetrance susceptibility factors, finding some potentially damaging variants which we have functionally characterized. All of them were found to be associated with a significant reduction of the normal NRG1 protein levels. The fact that those mutations analyzed alter NRG1 protein would suggest that they would be related with HSCR disease not only in Chinese but also in a Caucasian population, which reinforces the implication of NRG1 gene in this pathology

    Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes

    Get PDF
    Background: Hirschsprung disease (HSCR), which is congenital obstruction of the bowel, results from a failure of enteric nervous system (ENS) progenitors to migrate, proliferate, differentiate, or survive within the distal intestine. Previous studies that have searched for genes underlying HSCR have focused on ENS-related pathways and genes not fitting the current knowledge have thus often been ignored. We identify and validate novel HSCR genes using whole exome sequencing (WES), burden tests, in silico prediction, unbiased in vivo analyses of the mutated genes in zebrafish, and expression analyses in zebrafish, mouse, and human. Results: We performed de novo mutation (DNM) screening on 24 HSCR trios. We identify 28 DNMs in 21 different genes. Eight of the DNMs we identified occur in RET, the main HSCR gene, and the remaining 20 DNMs reside in genes not reported in the ENS. Knockdown of all 12 genes with missense or loss-of-function DNMs showed that the orthologs of four genes (DENND3, NCLN, NUP98, and TBATA) are indispensable for ENS development in zebrafish, and these results were confirmed by CRISPR knockout. These genes are also expressed in human and mouse gut and/or ENS progenitors. Importantly, the encoded proteins are linked to neuronal processes shared by the central nervous system and the ENS. Conclusions: Our data open new fields of investigation into HSCR pathology and provide novel insights into the development of the ENS. Moreover, the study demonstrates that functional analyses of genes carrying DNMs are warranted to delineate the full genetic architecture of rare complex diseases
    • …
    corecore