32 research outputs found
New Gamma-Ray Contributions to Supersymmetric Dark Matter Annihilation
We compute the electromagnetic radiative corrections to all leading
annihilation processes which may occur in the Galactic dark matter halo, for
dark matter in the framework of supersymmetric extensions of the Standard Model
(MSSM and mSUGRA), and present the results of scans over the parameter space
that is consistent with present observational bounds on the dark matter density
of the Universe. Although these processes have previously been considered in
some special cases by various authors, our new general analysis shows novel
interesting results with large corrections that may be of importance, e.g., for
searches at the soon to be launched GLAST gamma-ray space telescope. In
particular, it is pointed out that regions of parameter space where there is a
near degeneracy between the dark matter neutralino and the tau sleptons,
radiative corrections may boost the gamma-ray yield by up to three or four
orders of magnitude, even for neutralino masses considerably below the TeV
scale, and will enhance the very characteristic signature of dark matter
annihilations, namely a sharp step at the mass of the dark matter particle.
Since this is a particularly interesting region for more constrained mSUGRA
models of supersymmetry, we use an extensive scan over this parameter space to
verify the significance of our findings. We also re-visit the direct
annihilation of neutralinos into photons and point out that, for a considerable
part of the parameter space, internal bremsstrahlung is more important for
indirect dark matter searches than line signals.Comment: Replaced Fig. 2c which by mistake displayed the same spectrum as Fig.
2d; the radiative corrections reported here are now implemented in DarkSUSY
which is available at http://www.physto.se/~edsjo/darksusy
AGR2, an Endoplasmic Reticulum Protein, Is Secreted into the Gastrointestinal Mucus
The MUC2 mucin is the major constituent of the two mucus layers in colon. Mice lacking the disulfide isomerase-like protein Agr2 have been shown to be more susceptible to colon inflammation. The Agr2(-/-) mice have less filled goblet cells and were now shown to have a poorly developed inner colon mucus layer. We could not show AGR2 covalently bound to recombinant MUC2 N- and C-termini as have previously been suggested. We found relatively high concentrations of Agr2 in secreted mucus throughout the murine gastrointestinal tract, suggesting that Agr2 may play extracellular roles. In tissue culture (CHO-K1) cells, AGR2 is normally not secreted. Replacement of the single Cys in AGR2 with Ser (C81S) allowed secretion, suggesting that modification of this Cys might provide a mechanism for circumventing the KTEL endoplasmic reticulum retention signal. In conclusion, these results suggest that AGR2 has both intracellular and extracellular effects in the intestine
Direct Constraints on Minimal Supersymmetry from Fermi-LAT Observations of the Dwarf Galaxy Segue 1
The dwarf galaxy Segue 1 is one of the most promising targets for the
indirect detection of dark matter. Here we examine what constraints 9 months of
Fermi-LAT gamma-ray observations of Segue 1 place upon the Constrained Minimal
Supersymmetric Standard Model (CMSSM), with the lightest neutralino as the dark
matter particle. We use nested sampling to explore the CMSSM parameter space,
simultaneously fitting other relevant constraints from accelerator bounds, the
relic density, electroweak precision observables, the anomalous magnetic moment
of the muon and B-physics. We include spectral and spatial fits to the Fermi
observations, a full treatment of the instrumental response and its related
uncertainty, and detailed background models. We also perform an extrapolation
to 5 years of observations, assuming no signal is observed from Segue 1 in that
time. Results marginally disfavour models with low neutralino masses and high
annihilation cross-sections. Virtually all of these models are however already
disfavoured by existing experimental or relic density constraints.Comment: 22 pages, 5 figures; added extra scans with extreme halo parameters,
expanded introduction and discussion in response to referee's comment
The cosmic ray positron excess and neutralino dark matter
Using a new instrument, the HEAT collaboration has confirmed the excess of
cosmic ray positrons that they first detected in 1994. We explore the
possibility that this excess is due to the annihilation of neutralino dark
matter in the galactic halo. We confirm that neutralino annihilation can
produce enough positrons to make up the measured excess only if there is an
additional enhancement to the signal. We quantify the `boost factor' that is
required in the signal for various models in the Minimal Supersymmetric
Standard Model parameter space, and study the dependence on various parameters.
We find models with a boost factor greater than 30. Such an enhancement in the
signal could arise if we live in a clumpy halo. We discuss what part of
supersymmetric parameter space is favored (in that it gives the largest
positron signal), and the consequences for other direct and indirect searches
of supersymmetric dark matter.Comment: 11 pages, 6 figures, matches published version (PRD
Direct versus indirect detection in mSUGRA with self-consistent halo models
We perform a detailed analysis of the detection prospects of neutralino dark
matter in the mSUGRA framework. We focus on models with a thermal relic
density, estimated with high accuracy using the DarkSUSY package, in the range
favored by current precision cosmological measurements. Direct and indirect
detection rates are computed implementing two models for the dark matter halo,
tracing opposite regimes for the phase of baryon infall, with fully consistent
density profiles and velocity distribution functions. This has allowed, for the
first time, a fully consistent comparison between direct and indirect detection
prospects. We discuss all relevant regimes in the mSUGRA parameter space,
underlining relevant effects, and providing the basis for extending the
discussion to alternative frameworks. In general, we find that direct detection
and searches for antideuterons in the cosmic rays seems to be the most
promising ways to search for neutralinos in these scenarios.Comment: 26 pages, 9 figure
Positron Propagation and Fluxes from Neutralino Annihilation in the Halo
Supersymmetric neutralinos are one of the most promising candidates for the
dark matter in the Universe. If they exist, they should make up some fraction
of the Milky Way halo. We investigate the fluxes of positrons expected at the
Earth from neutralino annihilation in the halo. Positron propagation is treated
in a diffusion model including energy loss. The positron source function
includes contributions from both continuum and monochromatic positrons. We find
that, for a "canonical" halo model and propagation parameters, the fluxes are
generally too low to be visible. Given the large uncertainties in both
propagation and halo structure, it is however possible to obtain observable
fluxes. We also investigate the shapes of the positron spectra, including fits
to a feature indicated by the results of the HEAT experiment.Comment: 16 pages, 19 figures, uses revte
Indirect Neutralino Detection Rates in Neutrino Telescopes
Neutralinos annihilating in the center of the Sun or the Earth may give rise
to a detectable signal of neutrinos. We derive the indirect detection rates for
neutrino telescopes in the minimal supersymmetric extension of the standard
model. We show that even after imposing all phenomenological and experimental
constraints that make the theories viable, regions of parameter space exist
which can already be probed by existing neutrino telescopes. We compare with
the discovery potential of supersymmetry at LEP2 as well as direct detections
and point out the complementarity of the methods.Comment: LaTeX, 18 pages with 9 eps-figure
Masked volume wise principal component analysis of small adrenocortical tumours in dynamic [11C]-metomidate positron emission tomography
<p>Abstract</p> <p>Background</p> <p>In previous clinical Positron Emission Tomography (PET) studies novel approaches for application of Principal Component Analysis (PCA) on dynamic PET images such as Masked Volume Wise PCA (MVW-PCA) have been introduced. MVW-PCA was shown to be a feasible multivariate analysis technique, which, without modeling assumptions, could extract and separate organs and tissues with different kinetic behaviors into different principal components (MVW-PCs) and improve the image quality.</p> <p>Methods</p> <p>In this study, MVW-PCA was applied to 14 dynamic 11C-metomidate-PET (MTO-PET) examinations of 7 patients with small adrenocortical tumours. MTO-PET was performed before and 3 days after starting per oral cortisone treatment. The whole dataset, reconstructed by filtered back projection (FBP) 0–45 minutes after the tracer injection, was used to study the tracer pharmacokinetics.</p> <p>Results</p> <p>Early, intermediate and late pharmacokinetic phases could be isolated in this manner. The MVW-PC1 images correlated well to the conventionally summed image data (15–45 minutes) but the image noise in the former was considerably lower. PET measurements performed by defining "hot spot" regions of interest (ROIs) comprising 4 contiguous pixels with the highest radioactivity concentration showed a trend towards higher SUVs when the ROIs were outlined in the MVW-PC1 component than in the summed images. Time activity curves derived from "50% cut-off" ROIs based on an isocontour function whereby the pixels with SUVs between 50 to 100% of the highest radioactivity concentration were delineated, showed a significant decrease of the SUVs in normal adrenal glands and in adrenocortical adenomas after cortisone treatment.</p> <p>Conclusion</p> <p>In addition to the clear decrease in image noise and the improved contrast between different structures with MVW-PCA, the results indicate that the definition of ROIs may be more accurate and precise in MVW-PC1 images than in conventional summed images. This might improve the precision of PET measurements, for instance in therapy monitoring as well as for delineation of the tumour in radiation therapy planning.</p
A Profile Likelihood Analysis of the Constrained MSSM with Genetic Algorithms
The Constrained Minimal Supersymmetric Standard Model (CMSSM) is one of the
simplest and most widely-studied supersymmetric extensions to the standard
model of particle physics. Nevertheless, current data do not sufficiently
constrain the model parameters in a way completely independent of priors,
statistical measures and scanning techniques. We present a new technique for
scanning supersymmetric parameter spaces, optimised for frequentist profile
likelihood analyses and based on Genetic Algorithms. We apply this technique to
the CMSSM, taking into account existing collider and cosmological data in our
global fit. We compare our method to the MultiNest algorithm, an efficient
Bayesian technique, paying particular attention to the best-fit points and
implications for particle masses at the LHC and dark matter searches. Our
global best-fit point lies in the focus point region. We find many
high-likelihood points in both the stau co-annihilation and focus point
regions, including a previously neglected section of the co-annihilation region
at large m_0. We show that there are many high-likelihood points in the CMSSM
parameter space commonly missed by existing scanning techniques, especially at
high masses. This has a significant influence on the derived confidence regions
for parameters and observables, and can dramatically change the entire
statistical inference of such scans.Comment: 47 pages, 8 figures; Fig. 8, Table 7 and more discussions added to
Sec. 3.4.2 in response to referee's comments; accepted for publication in
JHE