22 research outputs found

    Core/Shell Colloidal Semiconductor Nanoplatelets

    No full text
    We have recently synthesized atomically flat semiconductor colloidal nanoplatelets with quasi 2D geometry. Here, we show that core/shell nanoplatelets can be obtained with a 2D geometry that is conserved. The epitaxial growth of the shell semiconductor is performed at room temperature. We report the detailed synthesis of CdSe/CdS and CdSe/CdZnS structures with different shell thicknesses. The shell growth is characterized both spectroscopically and structurally. In particular, the core/shell structure appears very clearly on high-resolution, high-angle annular dark-field transmission electron microscope images, thanks to the difference of atomic density between the core and the shell. When the nanoplatelets stand on their edge, we can precisely count the number of atomic planes forming the core and the shell. This provides a direct measurement, with atomic precision, of the core nanoplatelets thickness. The constraints exerted by the shell growth on the core is analyzed using global phase analysis. The core/shell nanoplatelets we obtained have narrow emission spectra with full-width at half-maximum close to 20 nm, and quantum yield that can reach 60%

    Selective Electrophoretic Deposition of CdSe Nanoplatelets

    No full text
    In the fields of nanoparticle synthesis and application, the control of the particle size, shape and composition is crucial. The tuning of these different parameters can be performed during the synthesis, but often, additional selection steps to improve the purity of a given nanoparticlesā€™ population are necessary. These additional postsynthesis selection steps, that can include size selective precipitation, ultracentrifugation or liquid chromatography, are usually long and not well suited for a large quantity of materials. Here, we demonstrate that electrophoresis performed directly in organic solvent can be used to select and/or separate semiconductor nanoparticles according to their size and shape. In particular, we show that 2D nanoplatelets (NPL) can be very efficiently separated from spherical nanoparticles as the side product obtained during the NPL synthesis. The selectivity of the electrophoretic deposition we observe is mostly related to the nanoparticle surface charge. We show that centimeter scale, uniform film of nanoplatelets can be obtained even on nonconducting substrates. Compared to other methods this technique is fast, easy to implement and scalable, and should find various uses both in the fields of the nanoparticle synthesis and their applications

    Self-Assembly of CdSe Nanoplatelets into Giant Micrometer-Scale Needles Emitting Polarized Light

    No full text
    We report on the self-assembly of colloidal CdSe nanoplatelets into micrometers long anisotropic needle-like superparticles (SPs), which are formed in solution upon addition of an antisolvent to a stable colloidal dispersion. Optical fluorescence microscopy, transmission electron microscopy, and small-angle X-ray scattering provide detailed structural characterization and show that each particle is composed of 10<sup>6</sup> nanoplatelets organized in highly aligned columns. Within the SPs, the nanoplatelets are stacked on each other to maximize the contact surface between the ligands. When deposited on a substrate, the planes of the platelets are oriented perpendicularly to its surface and the SPs exhibit polarized emission properties

    Spectroscopy of Single CdSe Nanoplatelets

    No full text
    We collect and resolve spectrally and temporally the photoluminescence of single CdSe nanoplatelets. The emission intensity of single nanoplatelets at room temperature shows ON and OFF periods with a usual blinking statistics, while at 20 K, their emission intensity can be extremely stable in time. At room temperature, the emission spectra of single nanoplatelets are similar to ensemble measurements with a full width at half-maximum of 40 meV. At 20 K, we obtain a resolution-limited spectral line width (<0.4 meV). The fluorescence lifetime of single nanoplatelets decreases when the temperature decreases to reach 200 ps at 20 K. This lifetime shortening is concomitant with an increase of the nanoplateletsā€™ emission intensity

    Electrolyte-Gated Colloidal Nanoplatelets-Based Phototransistor and Its Use for Bicolor Detection

    No full text
    Colloidal nanocrystals are appealing candidates for low cost optoelectronic applications because they can combine the advantages of both organic materials, such as their easy processing, and the excellent performance of inorganic systems. Here, we report the use of two-dimensional colloidal nanoplatelets for photodetection. We show that the nanoplatelets photoresponse can be enhanced by two to three orders of magnitude when they are incorporated in an all solid electrolyte-gated phototransistor. We extend this technique to build the first colloidal quantum dot-based bicolor detector with a response switchable between the visible and near-IR

    Type-II CdSe/CdTe Core/Crown Semiconductor Nanoplatelets

    No full text
    We have synthesized atomically flat CdSe/CdTe core/crown nanoplatelets (NPLs) with thicknesses of 3, 4, and 5 monolayers with fine control of the crown lateral dimensions. In these type-II NPLs, the charges separate spatially, and the electron wave function is localized in the CdSe core while the hole wave function is confined in the CdTe crown. The excitonā€™s recombination occurs across the heterointerface, and as a result of their spatially indirect band gap, an important emission red shift up to the near-infrared region (730 nm) is observed with long fluorescence lifetimes that range from 30 to 860 ns, depending on the type of interface between the core and the crown. These type-II NPLs have a high quantum yield of 50% that can be further improved to 70% with a gradient interface. We have characterized these novel CdSe/CdTe core/crown NPLs using UVā€“vis, emission, and excitation spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy

    Phonon Line Emission Revealed by Self-Assembly of Colloidal Nanoplatelets

    No full text
    We show that colloidal nanoplatelets can self-assemble to form a 1D superlattice. When self-assembled, an additional emission line appears in the photoluminescence spectrum at low temperatures. This emission line is a collective effect, greatly enhanced when the NPLs are self-assembled. It is attributed to the longitudinal optical (LO) phonon replica of the band-edge exciton, and its presence in self-assembled nanoplatelets is explained using a model based on an efficient photons reabsorption between neighboring nanoplatelets. The presence of phonon replica at low temperatures in ensemble measurements suggests the possibility to design a laser, based on self-assembled nanoplatelets

    Fast, Efficient, and Stable Conjugation of Multiple DNA Strands on Colloidal Quantum Dots

    No full text
    A novel method for covalent conjugation of DNA to polymer coated quantum dots (QDs) is investigated in detail. This method is fast and efficient: up to 12 DNA strands can be covalently conjugated per QD in optimized reaction conditions. The QD-DNA conjugates can be purified using size exclusion chromatography and the QDs retain high quantum yield and excellent stability after DNA coupling. We explored single-stranded and double-stranded DNA coupling, as well as various lengths. We show that the DNA coupling is most efficient for short (15 mer) single-stranded DNA. The DNA coupling has been performed on QDs emitting at four different wavelengths, as well as on gold nanoparticles, suggesting that this technique can be generalized to a wide range of nanoparticles

    Recombination Dynamics of Band Edge Excitons in Quasi-Two-Dimensional CdSe Nanoplatelets

    No full text
    We report a time-resolved study of the photoluminescence of CdSe colloidal nanoplatelets with two different thicknesses. By studying the exciton recombination dynamics we assess the exciton fine structure in these systems. The splitting between bright and dark excitons is enhanced compared to epitaxial quantum well structures as result of dielectric confinement. Despite of strong variations in the absolute magnitude, by comparison with literature data we find a relatively slightly varying brightā€“dark exciton lifetime ratio in very different CdSe-based colloidal nanostructures, regardless of growth technique and of core and shell properties such as materials, dimensions, etc. This finding points to a universal mechanism in the dark exciton recombination

    Synthesis of Zinc and Lead Chalcogenide Core and Core/Shell Nanoplatelets Using Sequential Cation Exchange Reactions

    No full text
    We present the synthesis of a novel type of chalcogenide nanoplatelets. Starting from CdS core or CdSe/CdS core/shell nanoplatelets, we use sequential cation exchange to copper and then to either zinc or lead to obtain ZnS and PbS core or ZnSe/ZnS and PbSe/PbS core/shell structures. The procedure preserves well the 2D geometry of the nanoplatelets, provided that they are more than 6 monolayers (āˆ¼1.8 nm) thick. The core/shell structure is also well conserved during the cation exchange as verified by TEM images. The nanoplatelets exchanged with Zn crystallize in a zinc blende structure, like the initial Cd-based material, whereas when Pb is used, the final nanoplatelets have a rock-salt crystal structure. We explored the copper cation exchange process using energy dispersive X-ray spectrometry with 1 nm resolution on nanoplatelets standing on their edges, and we show that copper ions diffuse uniformly from the outside of the nanoplatelet to the inside during the exchange
    corecore