71 research outputs found

    Convection-enhanced delivery of nanocarriers for the treatment of brain tumors

    Get PDF
    Primary brain tumors have a significant infiltrative capacity as their reappearance after resection usually occurs within 2cm of the tumor margin. Local delivery method such as Convection-Enhanced Delivery (CED) has been introduced to avoid this recurrence by delivering active molecules via positive-pressure methods. For an efficient infusion, the distribution volume of the drug has to be optimized while avoiding backflow, since this is responsible for side effects and a reduction of therapeutic efficacy. The encapsulation of the drug infused in nanosized structures can be considered, which would lead to a reduction of both toxicity of the treatment and infusion time during CED. In the present review, we will firstly discuss the technical approach of CED with regard to catheter design and brain characteristics; secondly, we will describe the \u27ideal\u27 nanocarrier in terms of size, surface properties, and interaction with the extracellular matrix for optimal diffusion in the brain parenchyma. We also discuss preclinical and clinical applications of this new method

    Tumor transfection after systemic injection of DNA lipid nanocapsules

    Get PDF
    With the goal of generating an efficient vector for systemic gene delivery, a new kind of nanocarrier consisting of lipid nanocapsules encapsulating DOTAP/DOPE lipoplexes (DNA LNCs) was pegylated by the post-insertion of amphiphilic and flexible polymers. The aim of this surface modification was to create a long-circulating vector, able to circulate in the blood stream and efficient in transfecting tumoral cells after passive targeting by enhanced permeability and retention effect (EPR effect). PEG conformation, electrostatic features, and hydrophylicity are known to be important factors able to influence the pharmacokinetic behaviour of vectors. In this context, the surface structure characteristics of the newly pegylated DNA LNCs were studied by measuring electrophoretic mobility as a function of ionic strength in order to establish a correlation between surface properties and in vivo performance of the vector. Finally, thanks to this PEGylation, gene expression was measured up to 84-fold higher in tumor compared to other tested organs after intravenous injection. The present results indicate that PEGylated DNA LNCs are promising carriers for an efficient cancer gene therapy
    corecore