85 research outputs found

    Expeditious calcination of inorganic membranes by an instant temperature increment

    Get PDF
    Rapid thermal treatments potentially allow for a significant reduction in production time of ceramic multilayered membranes, in turn aiding increased industrial application of these membranes and accelerating research on their development. Two methods are proposed for the rapid thermal treatment of thin supported inorganic membrane films. Both methods involve an instant increment in temperature imposed on the membrane. In the first method, the instant temperature step is enforced by placing the membrane in a preheated environment; in the second method, the membrane is placed directly onto a hot plate. The proposed methods can be used for a diverse range of materials. Mesoporous γ-alumina and microporous silica have been selected as model membrane materials. Both rapid heating methods require ∼20 min to yield mesoporous γ-alumina membranes that are comparable to membranes made via conventional calcination (∼1 day). Selective silica membranes have been obtained after 1 h exposure to an environment of 400 or 600 °C, and after 1 h contact with a hot plate of 550 °C (compared to up to 2 days for conventional calcination). The results indicate that, although prevention of contaminations needs continuous attention, both methods proposed for rapid heat treatment can reduce cost and time in ceramic membrane productio

    Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    Get PDF
    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (B5 wt%) and not too low spin speeds (C2000 rpm), the thicknesses of the films agree well with the scaling predicted by the model of Meyerhofer, when methanol or ethanol are used as solvent. The films exhibit uniaxial optical anisotropy with a higher in-plane refractive index, indicating a preferred orientation of the polymer chains in this in-plane direction. The radial shear forces that occur during the spin-coating process do not affect the refractive index and the extent of anisotropy. The anisotropy is due to internal stresses within the thin confined polymer film that are associated with the preferred orientations of the polymer chains. The internal stresses are reduced in the presence of a plasticizer, such as water or an organic solvent, and increase to their original value upon removal of such a plasticizer

    The effects of water on the morphology and the swelling behavior of sulfonated poly(ether ether ketone) films

    Get PDF
    Thin sulfonated poly(ether ether ketone) films swell excessively in water. The extent of water-induced swelling is shown to be correlated with the optical anisotropy of the films, due to two distinct phenomena. Firstly, the optical anisotropy is directly related to the amount of water taken up from the surrounding ambient atmosphere, and thus to amount of water present in the material just prior to swelling. Secondly, the optical anisotropy corresponds to internal stresses in the film that affect the free energy of the film, and thus the potential of the film to swell. The anisotropy vanishes upon sorption of liquid water and returns when the water is desorbed. When the water is completely removed, the film changes from more or less colorless to an intense yellow color that can be attributed to molecular assembly of the aromatic rings in the polymer backbone. The color change is reversible and occurs immediately upon exposure to low humidity. For films prepared in the absence of water, the lack of hydration of the sulfonic acid groups affects the microphase separation behavior of the polymer. This is manifested by an apparent lower propensity to water-induced swelling. The possibility to affect the properties of sulfonated polymer films by varying the hydration state of the polymer during preparation can have important implications for applications of such films

    Thermal Imidization Kinetics of Ultrathin Films of Hybrid Poly(POSS-imide)s

    Get PDF
    In the thermal imidization of an alternating inorganic–organic hybrid network, there is an inverse relationship between the length and flexibility of the organic bridges and the extent of the layer shrinkage. The hybrid material studied here consists of polyhedral oligomeric silsesquioxanes that are covalently bridged by amic acid groups. During heat treatment, shrinkage of the materials occurs due to the removal of physically bound water, imidization of the amic acid groups, and silanol condensation. For five different bridging groups with different lengths and flexibilities, comparable mass reductions are observed. For the shorter bridging groups, the dimensional changes are hindered by the limited network mobility. Longer, more flexible bridging groups allow for much greater shrinkage. The imidization step can be described by a decelerating reaction mechanism with an onset at 150 °C and shows a higher activation energy than in the case of entirely organic polyimides. The differences in the imidization kinetics between hybrid and purely organic materials demonstrates the need for close study of the thermal processing of hybrid, hyper-cross-linked material

    Kinetic Analysis of the Thermal Processing of Silica and Organosilica

    Get PDF
    The incorporation of an organic group into sol–gel-derived silica causes significant changes in the structure and properties of these materials. Therefore, the thermal treatment of organosilica materials may require a different approach. In the present paper, kinetic parameters (activation energy, pre-exponential constant, and reaction models) have been determined from mass loss data for the dehydration, dehydroxylation, and decomposition reactions that take place upon heating silica and organosilica. Parameters were obtained by employing model-free isoconversional methods to data obtained under multiple heating rates as well as by multivariate analysis of the kinetics using a multistep reaction model with distributed activation energy. For silica, it can be concluded that the reaction atmosphere (i.e., inert or thermo-oxidative) has no influence on the reaction rate of the dehydration and dehydroxylation reactions that are responsible for the densification of the material. Under inert atmosphere, full dehydration can be reached without affecting the organic moiety. Achieving complete dehydroxylation of the organosilica is practically impossible as decomposition does manifest itself under commonly employed calcination temperatures. This indicates that prudence is required in designing a heat treatment program for these hybrid materials. To aid in optimizing the thermal treatment, a predictive model was developed, which can be used to forecast the extent of dehydration, dehydroxylation, and decomposition reactions under a multitude of temperature program

    Sustainable Route to Inorganic Porous Hollow Fibers with Superior Properties

    Get PDF
    This research article presents a method for the fabrication of inorganic porous hollow fibers, using ecologically benign feed materials instead of organic solvents and harmful additives. Our method is based on ionic cross-linking of an aqueous mixture of sodium alginate, inorganic particles, and a carbonate. The mixture is spun into an acidic coagulation bath, where the low pH triggers the dissociation of the carbonate into multivalent cations and carbon dioxide. The multivalent cations cross-link the alginate, thereby consolidating the 3D structure and arresting the inorganic particles. In a subsequent thermal treatment, the polymer is removed, and the particles are sintered together. Adequate gelation requires a sufficiently low pH of the acid bath and a sufficing buffering capacity of the acid. In addition, to facilitate thermal treatment, it appears to be crucial that the acid has a conjugated base with limited propensity for complexing cations. The environmentally safe and sustainable lactic acid and acetic acid are shown to be convenient acids. The fibers prepared via our method have outstanding properties, such as high mechanical strength, homogeneous morphology, and sharp distribution of small pores. In addition, they are prepared using sustainable chemicals such as lactic acid and calcium carbonate

    Dynamic response of ultrathin highly dense ZIF-8 nanofilms

    Get PDF
    Ultrathin ZIF-8 nanofilms are prepared by facile step-by-step dip coating. A critical withdrawal speed allows for films with a very uniform minimum thickness. The high refractive index of the films denotes the absence of mesopores. The dynamic response of the films to CO2 exposure resembles behaviour observed for nonequilibrium organic polymers

    Highly permeable and mechanically robust silicon carbide hollow fiber membranes

    Get PDF
    Silicon carbide (SiC) membranes have shown large potential for applications in water treatment. Being able to make these membranes in a hollow fiber geometry allows for higher surface-to-volume ratios. In this study, we present a thermal treatment procedure that is tuned to produce porous silicon carbide hollow fiber membranes with sufficient mechanical strength. Thermal treatments up to 1500 °C in either nitrogen or argon resulted in relatively strong fibers, that were still contaminated with residual carbon from the polymer binder. After treatment at a higher temperature of 1790 °C, the mechanical strength had decreased as a result of carbon removal, but after treatments at even higher temperature of 2075 °C the SiC-particles sinter together, resulting in fibers with mechanical strengths of 30–40 MPa and exceptionally high water permeabilities of 50,000 L m−2 h−1 bar−1. Combined with the unique chemical and thermal resistance of silicon carbide, these properties make the fibers suitable microfiltration membranes or as a membrane support for application under demanding condition
    • …
    corecore