10,874 research outputs found

    Characterization of classical Gaussian processes using quantum probes

    Full text link
    We address the use of a single qubit as a quantum probe to characterize the properties of classical noise. In particular, we focus on the characterization of classical noise arising from the interaction with a stochastic field described by Gaussian processes. The tools of quantum estimation theory allow us to find the optimal state preparation for the probe, the optimal interaction time with the external noise, and the optimal measurement to effectively extract information on the noise parameter. We also perform a set of simulated experiments to assess the performances of maximum likelihood estimator, showing that the asymptotic regime, where the estimator is unbiased and efficient, is approximately achieved after few thousands repeated measurements on the probe system.Comment: 7 pages, 4 figures, to appear in Phys. Lett.

    Combed 3-Manifolds with Concave Boundary, Framed Links, and Pseudo-Legendrian Links

    Full text link
    We provide combinatorial realizations, according to the usual objects/moves scheme, of the following three topological categories: (1) pairs (M,v) where M is a 3-manifold (up to diffeomorphism) and v is a (non-singular vector) field, up to homotopy; here possibly the boundary of M is non-empty and v may be tangent to the boundary, but only in a concave fashion, and homotopy should preserve tangency type; (2) framed links L in M, up to framed isotopy; (3) triples (M,v,L), with (M,v) as above and L transversal to v, up to pseudo-Legendrian isotopy (transversality-preserving simultaneous homotopy of v and isotopy of L). All realizations are based on the notion of branched standard spine, and build on results previously obtained. Links are encoded by means of diagrams on branched spines, where the diagram is smooth with respect to the branching. Several motivations for being interested in combinatorial realizations of the topological categories considered in this paper are given in the introduction. The encoding of links is suitable for the comparison of the framed and the pseudo-Legendrian categories, and some applications are given in connection with contact structures, torsion and finite-order invariants. An estension of Trace's notion of winding number of a knot diagram is introduced and discussed.Comment: 38 pages, 33 figure

    The Cagliari Airport impact on Sardinia tourism: a Logit-based analysis

    Get PDF
    In the field of air transportation management, traditionally, airlines have been the main actors in the process for deciding which new flights open in a given airport, while airports acted only as the managers of the operations. The changes in the market due to the introduction of low cost companies, with consequent reduction of the airports' fares, as well as the increment of the density of regional airports in several European countries are modifying the mutual roles of airlines and airports. The final decision on new flight to be opened, in fact, is nowadays the result of a negotiation between airlines and airports. The airports must prove the sustainability on the new routes and forecast the economic impact on their catchment area. This paper contributes to advance the current state-of-the-art along two axes. From the pure transportation literature point of view, we introduce a Logit model able to predict the passengers flow in an airport when the management introduces a change in the flight schedule. The model is also able to predict the impact of this change on the airports in the surrounding areas. The second contribution is a case study on the tourist market of the Sardinia region, where we show how to use the results of the model to deduce the economic impact of the decisions of the management of the Cagliari airport on its catchment area in terms of tourists and economic growt

    Fractal properties of quantum spacetime

    Full text link
    We show that in general a spacetime having a quantum group symmetry has also a scale dependent fractal dimension which deviates from its classical value at short scales, a phenomenon that resembles what observed in some approaches to quantum gravity. In particular we analyze the cases of a quantum sphere and of \k-Minkowski, the latter being relevant in the context of quantum gravity.Comment: 4 pages, 2 figures; some minor corrections; reference adde

    Characterization of qubit chains by Feynman probes

    Get PDF
    We address the characterization of qubit chains and assess the performances of local measurements compared to those provided by Feynman probes, i.e. nonlocal measurements realized by coupling a single qubit regis- ter to the chain. We show that local measurements are suitable to estimate small values of the coupling and that a Bayesian strategy may be successfully exploited to achieve optimal precision. For larger values of the coupling Bayesian local strategies do not lead to a consistent estimate. In this regime, Feynman probes may be exploited to build a consistent Bayesian estimator that saturates the Cram\'er-Rao bound, thus providing an effective characterization of the chain. Finally, we show that ultimate bounds to precision, i.e. saturation of the quantum Cram\'er-Rao bound, may be achieved by a two-step scheme employing Feynman probes followed by local measurements.Comment: 8 pages, 5 figure

    Dynamics of quantum correlations in colored environments

    Full text link
    We address the dynamics of entanglement and quantum discord for two non interacting qubits initially prepared in a maximally entangled state and then subjected to a classical colored noise, i.e. coupled with an external environment characterized by a noise spectrum of the form 1/fα1/f^{\alpha}. More specifically, we address systems where the Gaussian approximation fails, i.e. the sole knowledge of the spectrum is not enough to determine the dynamics of quantum correlations. We thus investigate the dynamics for two different configurations of the environment: in the first case the noise spectrum is due to the interaction of each qubit with a single bistable fluctuator with an undetermined switching rate, whereas in the second case we consider a collection of classical fluctuators with fixed switching rates. In both cases we found analytical expressions for the time dependence of entanglement and quantum discord, which may be also extended to a collection of flcutuators with random switching rates. The environmental noise is introduced by means of stochastic time-dependent terms in the Hamiltonian and this allows us to describe the effects of both separate and common environments. We show that the non-Gaussian character of the noise may lead to significant effects, e.g. environments with the same power spectrum, but different configurations, give raise to opposite behavior for the quantum correlations. In particular, depending on the characteristics of the environmental noise considered, both entanglement and discord display either a monotonic decay or the phenomena of sudden death and revivals. Our results show that the microscopic structure of environment, besides its noise spectrum, is relevant for the dynamics of quantum correlations, and may be a valid starting point for the engineering of non-Gaussian colored environments.Comment: 8 pages, 3 figure

    Non-Markovian continuous-time quantum walks on lattices with dynamical noise

    Get PDF
    We address the dynamics of continuous-time quantum walks on one-dimensional disordered lattices inducing dynamical noise in the system. Noise is described as time-dependent fluctuations of the tunneling amplitudes between adjacent sites, and attention is focused on non-Gaussian telegraph noise, going beyond the usual assumption of fast Gaussian noise. We observe the emergence of two different dynamical behaviors for the walker, corresponding to two opposite noise regimes: slow noise (i.e. strong coupling with the environment) confines the walker into few lattice nodes, while fast noise (weak coupling) induces a transition between quantum and classical diffusion over the lattice. A phase transition between the two dynamical regimes may be observed by tuning the ratio between the autocorrelation time of the noise and the coupling between the walker and the external environment generating the noise. We also address the non-Markovianity of the quantum map by assessing its memory effects, as well as evaluating the information backflow to the system. Our results suggest that the non-Markovian character of the evolution is linked to the dynamical behavior in the slow noise regime, and that fast noise induces a Markovian dynamics for the walker.Comment: 10 pages, 8 figure

    Continuous-time quantum walks on dynamical percolation graphs

    Full text link
    We address continuous-time quantum walks on graphs in the presence of time- and space-dependent noise. Noise is modeled as generalized dynamical percolation, i.e. classical time-dependent fluctuations affecting the tunneling amplitudes of the walker. In order to illustrate the general features of the model, we review recent results on two paradigmatic examples: the dynamics of quantum walks on the line and the effects of noise on the performances of quantum spatial search on the complete and the star graph. We also discuss future perspectives, including extension to many-particle quantum walk, to noise model for on-site energies and to the analysis of different noise spectra. Finally, we address the use of quantum walks as a quantum probe to characterize defects and perturbations occurring in complex, classical and quantum, networks.Comment: 7 pages, 4 figures. Accepted for publication in EPL Perspective

    Use of natural resins in repairing damaged timber beams – An experimental investigation

    Get PDF
    Different techniques including the application of steel elements, composite materials and polymeric resins have been used in the past to repair damaged timber beams. However, there is a growing need to replace these materials with those with minimal environmental impact. In addition, stringent requirements of conservation authorities on the compatibility between repair and parent materials have also necessitated search for innovative repair materials for timber beams. Therefore, an increasing shift of focus towards the use of materials derived from natural sources in repairing and reinforcing timber structures is currently experienced. This paper presents the results of an exploratory study on the use of natural resins (rosin and bone glue) in repairing oak timber beams. 15 oak timber beams with cross section dimensions of 67 x 67 mm and 1100 mm in length were tested in four-point bending to failure. Undamaged, damaged (unrepaired) and damaged but repaired timber beams (with rosin and bone glue) were tested. The effectiveness of the repair material and technique was analysed based on the bending capacity and mid span deflection at failure. The initial results show negligible effectiveness of rosin in repairing timber beams. In fact, about 16% reduction (average) in load carrying capacity with a corresponding 5% decrease (average) in maximum displacement was recorded. Relatively higher level of effectiveness was recorded with the use of bone glue (about 10 % average increase in load carrying capacity). However, over 30% corresponding average increase in the maximum displacement was also recorded. Further work investigating different repair techniques and other natural resins is presently underway
    corecore