6,133 research outputs found

    INVESTIGATION OF ROTATION SYMMETRIC FLOWS WITH CONSTANT SPIN

    Get PDF

    Antibound poles in cutoff Woods-Saxon and in Salamon-Vertse potentials

    Get PDF
    The motion of l=0 antibound poles of the S-matrix with varying potential strength is calculated in a cutoff Woods-Saxon (WS) potential and in the Salamon-Vertse (SV) potential, which goes to zero smoothly at a finite distance. The pole position of the antibound states as well as of the resonances depend on the cutoff radius, especially for higher node numbers. The starting points (at potential zero) of the pole trajectories correlate well with the range of the potential. The normalized antibound radial wave functions on the imaginary k-axis below and above the coalescence point have been found to be real and imaginary, respectively

    First observation of Cherenkov rings with a large area CsI-TGEM-based RICH prototype

    Full text link
    We have built a RICH detector prototype consisting of a liquid C6F14 radiator and six triple Thick Gaseous Electron Multipliers (TGEMs), each of them having an active area of 10x10 cm2. One triple TGEM has been placed behind the liquid radiator in order to detect the beam particles, whereas the other five have been positioned around the central one at a distance to collect the Cherenkov photons. The upstream electrode of each of the TGEM stacks has been coated with a 0.4 micron thick CsI layer. In this paper, we will present the results from a series of laboratory tests with this prototype carried out using UV light, 6 keV photons from 55Fe and electrons from 90Sr as well as recent results of tests with a beam of charged pions where for the first time Cherenkov Ring images have been successfully recorded with TGEM photodetectors. The achieved results prove the feasibility of building a large area Cherenkov detector consisting of a matrix of TGEMs.Comment: Presented at the International Conference NDIP-11, Lyon,July201

    VHMPID: a new detector for the ALICE experiment at LHC

    Full text link
    This article presents the basic idea of VHMPID, an upgrade detector for the ALICE experiment at LHC, CERN. The main goal of this detector is to extend the particle identification capabilities of ALICE to give more insight into the evolution of the hot and dense matter created in Pb-Pb collisions. Starting from the physics motivations and working principles the challenges and current status of development is detailed.Comment: 4 pages, 6 figures. To be published in EPJ Web of Conference

    Results and Consequences of Magnet Test and Cosmic Challenge of the CMS Barrel Muon Alignment System

    Get PDF
    In the last year - as part of the first test of the CMS experiment at CERN [1] called Magnet Test and Cosmic Challenge (MTCC) - about 25% of the barrel muon position monitoring system was built and operated. The configuration enabled us to test all the elements of the system and its function in real conditions. The correct operation of the system has been demonstrated. About 500 full measurement cycles have been recorded. In the paper the setup –including the read-out and control - is described and the first preliminary results are presented

    Climate of the upper atmosphere

    Get PDF
    In the frame of the European COST 296 project (Mitigation of Ionospheric Effects on Radio Systems, MIERS)investigations of the climate of the upper atmosphere have been carried out during the last four years to obtain new information on the upper atmosphere. Mainly its ionospheric part has been analysed as the ionosphere is most essential for the propagation of radio waves. Due to collaboration between different European partners many new results have been derived in the fields of long-term trends of different ionospheric and related atmospheric parameters, the investigations of different types of atmospheric waves and their impact on the ionosphere, the variability of the ionosphere, and the investigation of some space weather effects on the ionosphere.Published273-2991.7. Osservazioni di alta e media atmosferaJCR Journalreserve

    Atomic effects in astrophysical nuclear reactions

    Get PDF
    Two models are presented for the description of the electron screening effects that appear in laboratory nuclear reactions at astrophysical energies. The two-electron screening energy of the first model agrees very well with the recent LUNA experimental result for the break-up reaction He3(He3,2p)He4% He3(He3,2p)He^{4}, which so far defies all available theoretical models. Moreover, multi-electron effects that enhance laboratory reactions of the CNO cycle and other advanced nuclear burning stages, are also studied by means of the Thomas-Fermi model, deriving analytical formulae that establish a lower and upper limit for the associated screening energy. The results of the second model, which show a very satisfactory compatibility with the adiabatic approximation ones, are expected to be particularly useful in future experiments for a more accurate determination of the CNO astrophysical factors.Comment: 14 RevTex pages + 2 ps (revised) figures. Phys.Rev.C (in production
    corecore