2 research outputs found
Recommended from our members
Cooperative Assembly of Hsp70 Subdomain Clusters.
Many molecular chaperones exist as oligomeric complexes in their functional states, yet the physical determinants underlying such self-assembly behavior, as well as the role of oligomerization in the activity of molecular chaperones in inhibiting protein aggregation, have proven to be difficult to define. Here, we demonstrate direct measurements under native conditions of the changes in the average oligomer populations of a chaperone system as a function of concentration and time and thus determine the thermodynamic and kinetic parameters governing the self-assembly process. We access this self-assembly behavior in real time under native-like conditions by monitoring the changes in the micrometer-scale diffusion of the different complexes in time and space using a microfluidic platform. Using this approach, we find that the oligomerization mechanism of the Hsp70 subdomain occurs in a cooperative manner and involves structural constraints that limit the size of the species formed beyond the limits imposed by mass balance. These results illustrate the ability of microfluidic methods to probe polydisperse protein self-assembly in real time in solution and to shed light on the nature and dynamics of oligomerization processes.The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the ERC grant PhysProt (agreement no 337969) (T.P.J.K., M.A.W., and T.C.T.M.). In addition, we are grateful for financial support from the Frances and Augustus Newman Foundation (T.P.J.K. and M.A.W.), the Marie Curie Fellowship scheme (P.A.), the Cambridge Commonwealth, European and International Trust (M.M.J.B.), the NIH-Oxford Cambridge Scholars Programme (M.M.J.B.), St John’s College Cambridge (T.C.T.M.), the Swiss National Science Foundation (T.C.T.M.), and the Biotechnology and Biological Sciences Research Council (T.M.). F. A. A. is supported by a Senior Research Fellowship award from the Alzheimer’s Society, UK (grant number 317, AS-SF-16-003). This work was in part supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases at the National Institutes of Health (M.M.J.B.) and the Centre for Misfolding Diseases, Cambridge, UK
The binding of the small heat-shock protein αB-crystallin to fibrils of α-synuclein is driven by entropic forces.
Molecular chaperones are key components of the cellular proteostasis network whose role includes the suppression of the formation and proliferation of pathogenic aggregates associated with neurodegenerative diseases. The molecular principles that allow chaperones to recognize misfolded and aggregated proteins remain, however, incompletely understood. To address this challenge, here we probe the thermodynamics and kinetics of the interactions between chaperones and protein aggregates under native solution conditions using a microfluidic platform. We focus on the binding between amyloid fibrils of α-synuclein, associated with Parkinson's disease, to the small heat-shock protein αB-crystallin, a chaperone widely involved in the cellular stress response. We find that αB-crystallin binds to α-synuclein fibrils with high nanomolar affinity and that the binding is driven by entropy rather than enthalpy. Measurements of the change in heat capacity indicate significant entropic gain originates from the disassembly of the oligomeric chaperones that function as an entropic buffer system. These results shed light on the functional roles of chaperone oligomerization and show that chaperones are stored as inactive complexes which are capable of releasing active subunits to target aberrant misfolded species.The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007- 2013) through the ERC grant PhysProt (agreement n◦ 337969) (TS, TPJK). Furthermore, we acknowledge financial support from
the Marie Curie fellowship scheme for career development (PA),
EPSRC (EP/J01835x/1) (OT,JLPB), BBSRC, the Cambridge Commonwealth, European and International Trust (MMJB), the NIHOxford Cambridge Scholars Programme (MMJB), the Oppenheimer
Fellowship (THW), the Frances and Augustus Newman Foundation (TPJK), the Wellcome Trust (094425/Z/10/Z) (CMD, MV,
TPJK), the UK Research and Innovation Future Leaders Fellowship
(MR/S033947/1) (FAA) and the Alzheimer’s Society, UK (511)
(FAA). Furthermore, we thank Eva Klimont for protein preparation
and Alexander Büll for helpful discussion