57,005 research outputs found

    Relaxation to a Perpetually Pulsating Equilibrium

    Full text link
    Paper in honour of Freeman Dyson on the occasion of his 80th birthday. Normal N-body systems relax to equilibrium distributions in which classical kinetic energy components are 1/2 kT, but, when inter-particle forces are an inverse cubic repulsion together with a linear (simple harmonic) attraction, the system pulsates for ever. In spite of this pulsation in scale, r(t), other degrees of freedom relax to an ever-changing Maxwellian distribution. With a new time, tau, defined so that r^2d/dt =d/d tau it is shown that the remaining degrees of freedom evolve with an unchanging reduced Hamiltonian. The distribution predicted by equilibrium statistical mechanics applied to the reduced Hamiltonian is an ever-pulsating Maxwellian in which the temperature pulsates like r^-2. Numerical simulation with 1000 particles demonstrate a rapid relaxation to this pulsating equilibrium.Comment: 9 pages including 4 figure

    From Quasars to Extraordinary N-body Problems

    Get PDF
    We outline reasoning that led to the current theory of quasars and look at George Contopoulos's place in the long history of the N-body problem. Following Newton we find new exactly soluble N-body problems with multibody forces and give a strange eternally pulsating system that in its other degrees of freedom reaches statistical equilibrium.Comment: 13 pages, LaTeX with 1 postscript figure included. To appear in Proceedings of New York Academy of Sciences, 13th Florida Workshop in Nonlinear Astronomy and Physic

    Heated element fluid flow sensor Patent

    Get PDF
    Heated element sensor for fluid flow detection in thermal conductive conduit with adaptive means to determine flow rate and directio

    Gravothermal Catastrophe, an Example

    Full text link
    This work discusses gravothermal catastrophe in astrophysical systems and provides an analytic collapse solution which exhibits many of the catastrophe properties. The system collapses into a trapped surface with outgoing energy radiated to a future boundary, and provides an example of catastrophic collapse.Comment: To appear in Phys. Rev.
    corecore