75 research outputs found

    Whole Slide Quantification of Stromal Lymphatic Vessel Distribution and Peritumoral Lymphatic Vessel Density in Early Invasive Cervical Cancer: A Method Description

    Get PDF
    Peritumoral Lymphatic Vessel Density (LVD) is considered to be a predictive marker for the presence of lymph node metastases in cervical cancer. However, when LVD quantification relies on conventional optical microscopy and the hot spot technique, interobserver variability is significant and yields inconsistent conclusions. In this work, we describe an original method that applies computed image analysis to whole slide scanned tissue sections following immunohistochemical lymphatic vessel staining. This procedure allows to determine an objective LVD quantification as well as the lymphatic vessel distribution and its heterogeneity within the stroma surrounding the invasive tumor bundles. The proposed technique can be useful to better characterize lymphatic vessel interactions with tumor cells and could potentially impact on prognosis and therapeutic decisions

    Development of an animal experimental model to study the effects of levonorgestrel on the human endometrium

    Get PDF
    BACKGROUND: This study was designed to develop an animal model to test the response of endometrium to local progestin delivery. METHODS: Proliferative human endometrium was subcutaneously grafted in two groups of SCID mice that received, 2 days before, a subcutaneous estradiol (E2) pellet and, for half of them, an additional implant of levonorgestrel (LNG). Mice were sacrificed 1, 2, 3 or 4 weeks after endometrial implantation and grafts were histologically analysed. Proliferation, steroid hormone receptors, blood vessels and stromal decidualization in both groups (E2 and LNG) were immunohistologically evaluated and compared with proliferative endometrium and endometrium from women with an LNG intrauterine device. RESULTS: Grafts presented normal morphological endometrial characteristics. The expression of progesterone receptors was significantly decreased in glands and stroma of the LNG group as compared with the E2 group at all times. A significant decrease was also observed in the stromal expression of estrogen receptor- in the LNG group. At 4 weeks, the mean cross-sectional area of vessels was significantly higher after LNG treatment. CONCLUSIONS: These morphological and immunohistochemical characteristics are similar to those observed in women treated with local LNG. This mouse model might facilitate further investigations needed to understand the mechanisms responsible for the breakthrough bleeding frequently observed in progestin users

    Mixed origin of neovascularization of human endometrial grafts in immunodeficient mouse models

    Full text link
    peer reviewedBACKGROUND: In vivo mouse models have been developed to study the physiology of normal and pathologic endometrium. Although angiogenesis is known to play an important role in endometrial physiology and pathology, the origin of neovasculature in xenografts remains controversial. The aim of this study was to assess the origin of the neovasculature of endometrial grafts in different mouse models. METHODS: Human proliferative endometrium (n = 19 women) was grafted s.c. in two immunodeficient mouse strains: nude (n = 8) and severely compromised immunodeficient (SCID; n = 20). Mice were also treated with estradiol, progesterone or levonorgestrel. Fluorescence in-situ hybridization using a centromeric human chromosome X probe, immunohistochemistry (von Willebrand factor and collagen IV) and lectin perfusion were performed to identify the origin of the vessels. RESULTS: More than 90% of vessels within xenografts were of human origin 4 weeks after implantation. Some vessels (9.67 +/- 2.01%) were successively stained by human or mouse specific markers, suggesting the presence of chimeric vessels exhibiting a succession of human and murine portions. No difference in staining was observed between the two strains of mouse or different hormone treatments. Furthermore, erythrocytes were found inside human vessels, confirming their functionality. CONCLUSION: This article shows that human endometrial grafts retain their own vessels, which connect to the murine vasculature coming from the host tissue and become functional

    Comprehensive Analysis of Leukocytes, Vascularization and Matrix Metalloproteinases in Human Menstrual Xenograft Model

    Get PDF
    In our previous study, menstrual-like changes in mouse were provoked through the pharmacologic withdrawal of progesterone with mifepristone following induction of decidualization. However, mouse is not a natural menstruation animal, and the menstruation model using external stimuli may not truly reflect the occurrence and development of the human menstrual process. Therefore, we established a model of menstruation based on human endometrial xenotransplantation. In this model, human endometrial tissues were transplanted subcutaneously into SCID mice that were ovarectomized and supplemented with estrogen and progestogen by silastic implants with a scheme imitating the endocrinological milieu of human menstrual cycle. Morphology, hormone levels, and expression of vimentin and cytokeratin markers were evaluated to confirm the menstrual-like changes in this model. With 28 days of hormone treatment, transplanted human endometrium survived and underwent proliferation, differentiation and disintegration, similar to human endometrium in vivo. Human CD45+ cells showed a peak of increase 28 days post-transplantation. Three days after progesterone withdrawal, mouse CD45+ cells increased rapidly in number and were significantly greater than human CD45+ cell counts. Mouse CD31+ blood vascular-like structures were detected in both transplanted and host tissues. After progesterone withdrawal, the expression levels of matrix metalloproteinases (MMP) 1, 2, and 9 were increased. In summary, we successfully established a human endometrial xenotransplantation model in SCID mice, based on the results of menstrual-like changes in which MMP-1, 2 and 9 are involved. We showed that leukocytes are originated from in situ proliferation in human xenografts and involved in the occurrence of menstruation. This model will help to further understand the occurrence, growth, and differentiation of the endometrium and the underlying mechanisms of menstruation

    Compression garments and fabric orthoses for rehabilitation and function: a systematic mapping review.

    Get PDF
    Background/aims: Compression garments, joint supports and dynamic movement orthoses all use elastic fibres and close-fitting designs and have been researched for their effects on movement. There is little cross-referencing between research into these interventions. This review aimed to improve inter-disciplinary understanding by analysing key characteristics of the published evidence. Methods: Systematic mapping reviews identify gaps in an evidence base and identify questions for more in-depth reviews. This review was conducted in-line with current guidance. MEDLINE, CINAHL and Sports Discuss were searched for primary research investigating compression garments and orthoses for movement and function. The following search terms were used: "elastane", "spandex", "Lycra", "elastomer*", "Theratog*", "compression", "Neoprene", "orthotic", "orthosis", "shorts", "garment*", "splint", "brace", "sock*" and "stockings". Studies were screened against predetermined criteria and key study characteristics extracted. Findings: Three hundred and fifty-one studies were selected and analysed. Compression garment research was most common (236 studies), followed by research into joint supports (64 studies) and dynamic movement orthoses (42 studies). Research largely reflects the purpose for which each intervention was originally designed. Common topics investigated include posture and movement control, proprioception and muscle activity. Pressure beneath compression garments was measured in 30% of studies. Conclusions: The review highlights a need for more robust study designs in patient populations and accurate description of interventions. There is a need for a review on the possible effects of compression and support on movement control which should be used to inform future primary research

    Comparison of RCAS1 and metallothionein expression and the presence and activity of immune cells in human ovarian and abdominal wall endometriomas

    Get PDF
    BACKGROUND: The coexistence of endometrial and immune cells during decidualization is preserved by the ability of endometrial cells to regulate the cytotoxic immune activity and their capability to be resistant to immune-mediated apoptosis. These phenomena enable the survival of endometrial ectopic cells. RCAS1 is responsible for regulation of cytotoxic activity. Metallothionein expression seems to protect endometrial cells against apoptosis. The aim of the present study was to evaluate RCAS1 and metallothionein expression in human ovarian and scar endometriomas in relation to the presence of immune cells and their activity. METHODS: Metallothionein, RCAS1, CD25, CD69, CD56, CD16, CD68 antigen expression was assessed by immunohistochemistry in ovarian and scar endometriomas tissue samples which were obtained from 33 patients. The secretory endometrium was used as a control group (15 patients). RESULTS: The lowest metallothionein expression was revealed in ovarian endometriomas in comparison to scar endometriomas and to the control group. RCAS1 expression was at the highest level in the secretory endometrium and it was at comparable levels in ovarian and scar endometriomas. Similarly, the number of CD56-positive cells was lower in scar and ovarian endometriomas than in the secretory endometrium. The highest number of macrophages was found in ovarian endometriomas. RCAS1-positive macrophages were observed only in ovarian endometriomas. CD25 and CD69 antigen expression was higher in scar and ovarian endometriomas than in the control group. CONCLUSION: The expression of RCAS1 and metallothionein by endometrial cells may favor the persistence of these cells in ectopic localization both in scar following cesarean section and in ovarian endometriosis

    Neuroendocrine–immune disequilibrium and endometriosis: an interdisciplinary approach

    Get PDF
    Endometriosis, a chronic disease characterized by endometrial tissue located outside the uterine cavity, affects one fourth of young women and is associated with chronic pelvic pain and infertility. However, an in-depth understanding of the pathophysiology and effective treatment strategies of endometriosis is still largely elusive. Inadequate immune and neuroendocrine responses are significantly involved in the pathophysiology of endometriosis, and key findings are summarized in the present review. We discuss here the role of different immune mechanisms particularly adhesion molecules, protein–glycan interactions, and pro-angiogenic mediators in the development and progression of the disease. Finally, we introduce the concept of endometrial dissemination as result of a neuroendocrine-immune disequilibrium in response to high levels of perceived stress caused by cardinal clinical symptoms of endometriosis
    corecore