87 research outputs found
Measurement uncertainty in broadband radiofrequency radiation level measurements
For the evaluation of measurement uncertainty in the measurement of broadband
radio frequency radiation, in this paper we propose a new approach based on
the experience of the authors of the paper with measurements of
radiofrequency electric field levels conducted in residential areas of
Belgrade and over 35 municipalities in Serbia. The main objective of the
paper is to present practical solutions in the evaluation of broadband
measurement uncertainty for the in-situ RF radiation levels. [Projekat
Ministarstva nauke Republike Srbije, br. III43009
Data Driven Root Cause Analyses in Multistage Manufacturing Utilising Life Cycle Wide Product Information
Root cause analyses in multistage manufacturing represents inspiration for constant improvement of existing methodologies and implementation of new ones. Using quality information data from manufacturing stage and customer perception, robust model that can be utilized in line in actual manufacturing plant is created. In this paper, a new approach for managing dimensional quality and improvement of the product geometry has been presented. New methodology was checked and then applied in major automotive factory
Supplementary data for the article: Božinovski, D. M.; Petrović, P. V.; Belić, M. R.; Zarić, S. D. Insight into the Interactions of Amyloid β-Sheets with Graphene Flakes: Scrutinizing the Role of Aromatic Residues in Amyloids That Interact with Graphene. ChemPhysChem 2018, 19 (10), 1226–1233. https://doi.org/10.1002/cphc.201700847
Supplementary material for: [https://doi.org/10.1002/cphc.201700847]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/2154]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/3226
Supplementary data for article: Stanković, I. M.; Božinovski, D. M.; Brothers, E. N.; Belić, M. R.; Hall, M. B.; Zarić, S. D. Interactions of Aromatic Residues in Amyloids: A Survey of Protein Data Bank Crystallographic Data. Crystal Growth and Design 2017, 17 (12), 6353–6362. https://doi.org/10.1021/acs.cgd.7b01035
Supporting information for: [https://doi.org/10.1021/acs.cgd.7b01035]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/2566
Revidirani kvantitativni indeks osjetljivosti na inzulin: povezanost sa metaboličkim statusom krava tijekom rane laktacije
The revised quantitative insulin sensitivity check index (RQUICKI) is the most commonly used indicator of insulin resistance in dairy cows. The aim of this study was to examine the characteristics of metabolic status in cows with different RQUICKI index values during early lactation. The experiment included 40 Holstein-Friesian cows in the first week of lactation. The cows were classified into four groups according to quartile (Q 1 to 4) values of RQUICKI indexes: Q1 = 0.35-0.41 (most insulin resistant), Q2 = 0.42-0.52, Q3 = 0.53-0.67, Q4 = 0.68-0.77 (most insulin sensitive). Metabolic parameters were significantly different in early lactation cows, classified according to the values of the RQUICKI index. The cows that were the most resistant to insulin (Q1) had higher levels of non-esterified fatty acid (NEFA), cortisol, somatotropic hormone (STH), beta-hydroxybutyrate (BHB), total bilirubin, aspartate aminotransferase (AST), malondialdehyde (MDA) and body condition score (BCS) in comparison to the cows that were the least resistant to insulin (Q4). The cows also had lower levels of insulin-like growth factor I (IGF-I), triiodothyronine (T3), thyroxine (T4), albumin, cholesterol, triglycerides, Ca and P as well as a tendency towards lower insulin and glucose concentrations. Metabolic parameters were strongly regressed by RQUICKI in the most insulin resistant cows (Q1) in relation to the cows in the other groups, Q2-4. The cows with a higher number of metabolic abnormalities in their metabolic profiles had lower RQUICKI values: 0.56 ± 0.045 (no abnormalities); 0.52 ± 0.041 (1 abnormality); 0.47 ± 0.042 (2 abnormalities) and 0.4 ± 0.043 (≥3 abnormalities). We concluded that the RQUICKI index could be applied in order to accurately identify metabolic status in cows during early lactation. However, the kinetics of insulin sensitivity should be further studied using more animals per group, as well as in other breeds of cowsRevidirani kvantitativni indeks provjeravanja osjetljivosti na inzulin (RQUICKI) najčešće se koristi kao pokazatelj otpornosti na inzulin u krava. Cilj ovoga istraživanja bio je ustvrditi karakteristike metaboličkog statusa u krava s različitom vrijednosti RQUICKI indeksa u ranoj laktaciji. Pokus je uključivao 40 krava Holstein-Friesian pasmine. Krave su razvrstane u četiri skupine prema kvartilima (Q 1 do 4) vrijednosti RQUICKI indeksa: Q1 = 0,35-0,41 (najrezistentnije na inzulin), Q2 = 0,42-0,52, Q3 = 0,53-0,67, Q4 = 0,68-0,77 (najosjetljivije na inzulin). Metabolički parametri bili su znakovito različiti u krava u ranoj laktaciji razvrstanima prema vrijednostima RQUICKI indeksa. Krave koje su bile najrezistentnije na inzulin (Q1) imale su i veće razine NEFA, kortizola, STH, BHB, ukupnog bilirubina, AST, MDA i bolju tjelesnu kondiciju u usporedbi s kravama koje su bile najmanje osjetljive na inzulin (Q4). Također, te su krave imale niže koncentracije IGF-I, T3, T4, albumina, kolesterola, triglicerida, Ca i P te sklonost smanjenju koncentracije inzulina i glukoze. U skupini krava koje su najrezistentnije na inzulin (Q1) regresijska analiza je pokazala jaču povezanost između metaboličkih parametara i RQUICKI nego što je to bio slučaj u ostalim skupinama krava (Q2, Q3 i Q4). Krave s većim brojem metaboličkih abnormalnosti profila imale su nižu vrijednost RQUICKI: 0,56 ± 0,045 (bez abnormalnosti); 0,52 ± 0,041 (jedna abnormalnost); 0.47 ± 0.042 (dvije abnormalnosti) i 0.4 ± 0.043 (≥3 abnormalnosti). Zaključujemo da bi se RQUICKI indeks mogao primijeniti za točnije identificiranje metaboličkog statusa krava tijekom rane laktacije. Međutim, kinetika osjetljivosti na inzulin trebala bi se dodatno istražiti na većem broju životinja kao i u krava različitih pasmina
Supplementary data for the article: Božinovski, D. M.; Petrović, P. V.; Belić, M. R.; Zarić, S. D. Insight into the Interactions of Amyloid β-Sheets with Graphene Flakes: Scrutinizing the Role of Aromatic Residues in Amyloids That Interact with Graphene. ChemPhysChem 2018, 19 (10), 1226–1233. https://doi.org/10.1002/cphc.201700847
Supplementary material for: [https://doi.org/10.1002/cphc.201700847]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/2154]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/3226
Supplementary data for article: Stanković, I. M.; Božinovski, D. M.; Brothers, E. N.; Belić, M. R.; Hall, M. B.; Zarić, S. D. Interactions of Aromatic Residues in Amyloids: A Survey of Protein Data Bank Crystallographic Data. Crystal Growth and Design 2017, 17 (12), 6353–6362. https://doi.org/10.1021/acs.cgd.7b01035
Supporting information for: [https://doi.org/10.1021/acs.cgd.7b01035]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/2566
Quantum Vacuum Experiments Using High Intensity Lasers
The quantum vacuum constitutes a fascinating medium of study, in particular
since near-future laser facilities will be able to probe the nonlinear nature
of this vacuum. There has been a large number of proposed tests of the
low-energy, high intensity regime of quantum electrodynamics (QED) where the
nonlinear aspects of the electromagnetic vacuum comes into play, and we will
here give a short description of some of these. Such studies can shed light,
not only on the validity of QED, but also on certain aspects of nonperturbative
effects, and thus also give insights for quantum field theories in general.Comment: 9 pages, 8 figur
Supplementary data for article: Ninković, D. B.; Malenov, D. P.; Petrović, P. V.; Brothers, E. N.; Niu, S.; Hall, M. B.; Belić, M. R.; Zarić, S. D. Unexpected Importance of Aromatic–Aliphatic and Aliphatic Side Chain–Backbone Interactions in the Stability of Amyloids. Chemistry - A European Journal 2017, 23 (46), 11046–11053. https://doi.org/10.1002/chem.201701351
Supporting information for: [https://doi.org/10.1002/chem.201701351]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/2506]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/3118
- …