3 research outputs found

    Effects of Sex Hormones on Ocular Blood Flow and Intraocular Pressure in Primary Open Angle Glaucoma: A Review

    Get PDF
    Primary open-angle glaucoma (POAG) is a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and visual field loss. Some speculate that gender plays a role in the risk of developing POAG and that the physiologic differences between men and women may be attributed to the variable effects of sex hormones on intraocular pressure (IOP), ocular blood flow, and/or neuroprotection. Estrogen, in the form of premenopausal status, pregnancy, and post-menopausal hormone therapy is associated with increase in ocular blood flow, decrease in IOP and neuroprotective properties. The vasodilation caused by estrogen and its effects on aqueous humor outflow may contribute. On the other hand, although testosterone may have known effects in the cardiovascular and cerebrovascular systems, there is no consensus as to its effects in ocular health or POAG. With better understanding of sex hormones in POAG, sex hormone-derived preventative and therapeutic considerations in disease management may provide for improved gender-specific patient care

    Asian Race and Primary Open-Angle Glaucoma: Where Do We Stand?

    Get PDF
    Primary open-angle glaucoma (POAG) is an optic neuropathy characterized by irreversible retinal ganglion cell damage and visual field loss. The global POAG prevalence is estimated to be 3.05%, and near term is expected to significantly rise, especially within aging Asian populations. Primary angle-closure glaucoma disproportionately affects Asians, with up to four times greater prevalence of normal-tension glaucoma reported compared with high-tension glaucoma. Estimates for overall POAG prevalence in Asian populations vary, with Chinese and Indian populations representing the majority of future cases. Structural characteristics associated with glaucoma progression including the optic nerve head, retina, and cornea are distinct in Asians, serving as intermediates between African and European descent populations. Patterns in IOP suggest some similarities between races, with a significant inverse relationship between age and IOP only in Asian populations. Genetic differences have been suggested to play a role in these differences, however, a clear genetic pattern is yet to be established. POAG pathogenesis differs between Asians and other ethnicities, and it may differ within the broad classification of the Asian race. Greater awareness and further research are needed to improve treatment plans and outcomes for the increasingly high prevalence of normal tension glaucoma within aging Asian populations

    Physiology-Enhanced Data Analytics to Evaluate the Effect of Altitude on Intraocular Pressure and Ocular Hemodynamics

    No full text
    Altitude affects intraocular pressure (IOP); however, the underlying mechanisms involved and its relationship with ocular hemodynamics remain unknown. Herein, a validated mathematical modeling approach was used for a physiology-enhanced (pe-) analysis of the Mont Blanc study (MBS), estimating the effects of altitude on IOP, blood pressure (BP), and retinal hemodynamics. In the MBS, IOP and BP were measured in 33 healthy volunteers at 77 and 3466 m above sea level. Pe-retinal hemodynamics analysis predicted a statistically significant increase (p < 0.001) in the model predicted blood flow and pressure within the retinal vasculature following increases in systemic BP with altitude measured in the MBS. Decreased IOP with altitude led to a non-monotonic behavior of the model predicted retinal vascular resistances, with significant decreases in the resistance of the central retinal artery (p < 0.001) and retinal venules (p = 0.003) and a non-significant increase in the resistance in the central retinal vein (p = 0.253). Pe-aqueous humor analysis showed that a decrease in osmotic pressure difference (OPD) may underlie the difference in IOP measured at different altitudes in the MBS. Our analysis suggests that venules bear the significant portion of the IOP pressure load within the ocular vasculature, and that OPD plays an important role in regulating IOP with changes in altitude
    corecore