28 research outputs found
Spatial and environmental assessment of energy potentials for Anaerobic Digestion production systems applied to the Netherlands
Anaerobic digestion (AD) can play an important role in achieving the renewable energy goals set within the European Union. Within this article the focus is placed on reaching the Dutch local renewable production goal set for the year 2020 with locally available biomass waste flows, avoiding intensive farming and long transport distances of biomass and energy carriers. The bio-energy yields, efficiency and environmental sustainability are analyzed for five municipalities in the northern part of the Netherlands, using three utilization pathways: green gas production, combined heat and power, and waste management. Literature has indicated that there is sufficient bio-energy potential in local waste streams to reach the aforementioned goal. However, the average useful energy finally produced by the AD production pathway is significantly lower, often due to poor quality biomass and difficult harvesting conditions. Furthermore, of the potential bio-energy input in the three utilization pathways considered in this article, on average: 73% can be extracted as green gas; 57% as heat and power; and 44% as green gas in the waste management pathway. This demonstrates that the Dutch renewable production goal cannot be reached. The green gas utilization pathway is preferable for reaching production goals as it retains the highest amount of energy from the feedstock. However, environmental sustainability favors the waste management pathway as it has a higher overall efficiency, and lower emissions and environmental impacts. The main lessons drawn from the aforementioned are twofold: there is a substantial gap between bio-energy potential and net energy gain; there is also a gap between top-down regulation and actual emission reduction and sustainability. Therefore, a full life cycle-based understanding of the absolute energy and environmental impact of biogas production and utilization pathways is required to help governments to develop optimal policies serving a broad set of sustainable objectives. Well-founded ideas and decisions are needed on how best to utilize the limited biomass availability most effectively and sustainably in the near and far future, as biogas can play a supportive role for integrating other renewable sources into local decentralized energy systems as a flexible and storable energy source. (C) 2016 Elsevier Ltd. All rights reserved
Changes in anti-viral effectiveness of interferon after dose reduction in chronic hepatitis c patients: a case control study
BACKGROUND: High dose interferon induction treatment of hepatitis C viral infection blocks viral production over 95%. Since dose reduction is often performed due to clinical considerations, the effect of dose reduction on hepatitis C virus kinetics was studied. METHODS: A new model that allowed longitudinal changes in the parameters of viral dynamics was used in a group of genotype-1 patients (N = 15) with dose reduction from 10 to 3 million units of interferon daily in combination with ribavirin, in comparison to a control group (N = 9) with no dose reduction. RESULTS: Dose reduction gave rise to a complex viral kinetic pattern, which could be only explained by a decrease in interferon effectiveness in blocking virion production. The benefit of the rapid initial viral decline following the high induction dose is lost after dose reduction. In addition, in some patients also the second phase viral decline slope, which is highly predictive of success of treatment, was impaired by the dose reduction resulting in smaller percentage of viral clearance in the dose reduction group. CONCLUSIONS: These findings, while explaining the failure of many induction schedules, suggest that for genotype-1 patients induction therapy should be continued till HCVRNA negativity in serum in order to increase the sustained response rate for chronic hepatitis C
Pro-inflammatory Monocyte Phenotype During Acute Progression of Cerebral Small Vessel Disease
Background: The etiology of cerebral small vessel disease (SVD) remains elusive, though evidence is accumulating that inflammation contributes to its pathophysiology. We recently showed retrospectively that pro-inflammatory monocytes are associated with the long-term progression of white matter hyperintensities (WMHs). In this prospective high-frequency imaging study, we hypothesize that the incidence of SVD progression coincides with a pro-inflammatory monocyte phenotype.
Methods: Individuals with SVD underwent monthly magnetic resonance imaging (MRI) for 10 consecutive months to detect SVD progression, defined as acute diffusion-weighted imaging-positive (DWI+) lesions, incident microbleeds, incident lacunes, and WMH progression. Circulating inflammatory markers were measured, cytokine production capacity of monocytes was assessed after ex vivo stimulation, and RNA sequencing was performed on isolated monocytes in a subset of participants.
Results: 13 out of 35 individuals developed SVD progression (70 ± 6 years, 54% men) based on incident lesions (n = 7) and/or upper quartile WMH progression (n = 9). Circulating E-selectin concentration (p < 0.05) and the cytokine production capacity of interleukin (IL)-1β and IL-6 (p < 0.01) were higher in individuals with SVD progression. Moreover, RNA sequencing revealed a pro-inflammatory monocyte signature including genes involved in myelination, blood–brain barrier, and endothelial–leukocyte interaction.
Conclusions: Circulating monocytes of individuals with progressive SVD have an inflammatory phenotype, characterized by an increased cytokine production capacity and a pro-inflammatory transcriptional signature
An integrated approach for the validation of energy and environmental system analysis models:used in the validation of the Flexigas Excel BioGas model
A review has been completed for a verification and validation (V&V) of the (Excel) BioGas simulator or EBS model. The EBS model calculates the environmental impact of biogas production pathways using Material and Energy Flow Analysis, time dependent dynamics, geographic information, and Life Cycle analysis. Within this article a V&V method is researched, selected and applied to validate the EBS model. Through the use of the method described within this article: mistakes in the model are resolved, the strengths and weaknesses of the model are found, and the concept of the model is tested and strengthened. The validation process does not only improve the model but also helps the modelers in widening their focus and scope. This article can, therefore, also be used in the validation process of similar models. The main result from the V&V process indicates that the EBS model is valid; however, it should be considered as an expert model and should only be used by expert users
Endoscopic full-thickness resection of T1 colorectal cancers:a retrospective analysis from a multicenter Dutch eFTR registry
Background Complete endoscopic resection and accurate histological evaluation for T1 colorectal cancer (CRC) are critical in determining subsequent treatment. Endoscopic full-thickness resection (eFTR) is a new treatment option for T1 CRC<2cm. We aimed to report clinical outcomes and short-term results. Methods Consecutive eFTR procedures for T1 CRC, prospectively recorded in our national registry between November 2015 and April 2020, were retrospectively analyzed. Primary outcomes were technical success and R0 resection. Secondary outcomes were histological risk assessment, curative resection, adverse events, and short-term outcomes. Results We included 330 procedures: 132 primary resections and 198 secondary scar resections after incomplete T1 CRC resection. Overall technical success, R0 resection, and curative resection rates were 87.0% (95% confidence interval [CI] 82.7%-90.3%), 85.6% (95%CI 81.2%-89.2%), and 60.3% (95%CI 54.7%-65.7%). Curative resection rate was 23.7% (95%CI 15.9%-33.6%) for primary resection of T1 CRC and 60.8% (95%CI 50.4%-70.4%) after excluding deep submucosal invasion as a risk factor. Risk stratification was possible in 99.3%. The severe adverse event rate was 2.2%. Additional oncological surgery was performed in 49/320 (15.3%), with residual cancer in 11/49 (22.4%). Endoscopic follow-up was available in 200/242 (82.6%), with a median of 4 months and residual cancer in 1 (0.5%) following an incomplete resection. Conclusions eFTR is relatively safe and effective for resection of small T1 CRC, both as primary and secondary treatment. eFTR can expand endoscopic treatment options for T1 CRC and could help to reduce surgical overtreatment. Future studies should focus on long-term outcomes
Cost-effectiveness of minimal interventional procedures for chronic mechanical low back pain: design of four randomised controlled trials with an economic evaluation
Background: Minimal interventional procedures are frequently applied in patients with mechanical low back pain which is defined as pain presumably resulting from single sources: facet, disc, sacroiliac joint or a combination of these. Usually, these minimal interventional procedures are an integral part of a multidisciplinary pain programme. A recent systematic review issued by the Dutch Health Insurance Council showed that the effectiveness of these procedures for the total group of patients with chronic low back pain is yet unclear and cost-effectiveness unknown. The aim of the study is to evaluate whether a multidisciplinary pain programme with minimal interventional procedures is cost-effective compared to the multidisciplinary pain programme alone for patients with chronic mechanical low back pain who did not respond to conservative primary care and were referred to a pain clinic. Methods. All patients with chronic low back pain who are referred to one of the 13 participating pain clinics will be asked to participate in an observational study. Patients with a suspected diagnosis of facet, disc or sacroiliac joint problems will receive a diagnostic block to confirm this diagnosis. If confirmed, they will be asked to participate in a Randomized Controlled Trial (RCT). For each single source a separate RCT will be conducted. Patients with a combination of facet, disc or sacroiliac joint problems will be invited for participation in a RCT as well. An economic evaluation from a societal perspective will be performed alongside these four RCTs. Patients will complete questionnaires at baseline, 3 and 6 weeks, 3, 6, 9 and 12 months after start of the treatment
Spatial and environmental assessment of energy potentials for Anaerobic Digestion production systems applied to the Netherlands
Anaerobic digestion (AD) can play an important role in achieving renewable goals set within the Netherlands which strives for 40 PJ bio-energy in the year 2020. This research focusses on reaching this goal with locally available biomass waste flows (e.g. manures, grasses, harvest remains, municipal organic wastes). Therefore, the bio-energy yields, process efficiency and environmental sustainability are analyzed for five municipalities in the northern part Netherlands, using three utilization pathways: green gas production; combined heat and power; and waste management. Results indicate that the Dutch goal cannot be filled through the use of local biomass waste streams, which can only reach an average of 20 PJ. Furthermore renewable goals and environmental sustainability do not always align. Therefore, understanding of the absolute energy and environmental impact of biogas production pathways is required to help governments form proper policies, to promote an environmentally and social sustainable energy system
Measuring sustainability: why? and how?
Presentation given to a delegation from the University of Oldenburg and the Research company Next Energy to explore fields of collaboration in research topics