16 research outputs found
Tryptophan Metabolism via the Kynurenine Pathway:Implications for Graft Optimization during Machine Perfusion
Access to liver transplantation continues to be hindered by the severe organ shortage. Extended-criteria donor livers could be used to expand the donor pool but are prone to ischemia-reperfusion injury (IRI) and post-transplant graft dysfunction. Ex situ machine perfusion may be used as a platform to rehabilitate discarded or extended-criteria livers prior to transplantation, though there is a lack of data guiding the utilization of different perfusion modalities and therapeutics. Since amino acid derivatives involved in inflammatory and antioxidant pathways are critical in IRI, we analyzed differences in amino acid metabolism in seven discarded non-steatotic human livers during normothermic- (NMP) and subnormothermic-machine perfusion (SNMP) using data from untargeted metabolomic profiling. We found notable differences in tryptophan, histamine, and glutathione metabolism. Greater tryptophan metabolism via the kynurenine pathway during NMP was indicated by significantly higher kynurenine and kynurenate tissue concentrations compared to pre-perfusion levels. Livers undergoing SNMP demonstrated impaired glutathione synthesis indicated by depletion of reduced and oxidized glutathione tissue concentrations. Notably, ATP and energy charge ratios were greater in livers during SNMP compared to NMP. Given these findings, several targeted therapeutic interventions are proposed to mitigate IRI during liver machine perfusion and optimize marginal liver grafts during SNMP and NMP
Subnormothermic Machine Perfusion of Steatotic Livers Results in Increased Energy Charge at the Cost of Anti-Oxidant Capacity Compared to Normothermic Perfusion
There continues to be significant debate regarding the most effective mode of ex situ machine perfusion of livers for transplantation. Subnormothermic (SNMP) and normothermic machine perfusion (NMP) are two methods with different benefits. We examined the metabolomic profiles of discarded steatotic human livers during three hours of subnormothermic or normothermic machine perfusion. Steatotic livers regenerate higher stores of ATP during SNMP than NMP. However, there is a significant depletion of available glutathione during SNMP, likely due to an inability to overcome the high energy threshold needed to synthesize glutathione. This highlights the increased oxidative stress apparent in steatotic livers. Rescue of discarded steatotic livers with machine perfusion may require the optimization of redox status through repletion or supplementation of reducing agents
Metabolic and lipidomic profiling of steatotic human livers during ex situ normothermic machine perfusion guides resuscitation strategies
There continues to be a significant shortage of donor livers for transplantation. One impediment is the discard rate of fatty, or steatotic, livers because of their poor post-transplant function. Steatotic livers are prone to significant ischemia-reperfusion injury (IRI) and data regarding how best to improve the quality of steatotic livers is lacking. Herein, we use normothermic (37°C) machine perfusion in combination with metabolic and lipidomic profiling to elucidate deficiencies in metabolic pathways in steatotic livers, and to inform strategies for improving their function. During perfusion, energy cofactors increased in steatotic livers to a similar extent as non-steatotic livers, but there were significant deficits in anti-oxidant capacity, efficient energy utilization, and lipid metabolism. Steatotic livers appeared to oxidize fatty acids at a higher rate but favored ketone body production rather than energy regeneration via the tricyclic acid cycle. As a result, lactate clearance was slower and transaminase levels were higher in steatotic livers. Lipidomic profiling revealed Ï-3 polyunsaturated fatty acids increased in non-steatotic livers to a greater extent than in steatotic livers. The novel use of metabolic and lipidomic profiling during ex situ normothermic machine perfusion has the potential to guide the resuscitation and rehabilitation of steatotic livers for transplantation
Split-Liver Ex Situ Machine Perfusion:A Novel Technique for Studying Organ Preservation and Therapeutic Interventions
Ex situ machine perfusion is a promising technology to help improve organ viability prior to transplantation. However, preclinical studies using discarded human livers to evaluate therapeutic interventions and optimize perfusion conditions are limited by significant graft heterogeneity. In order to improve the efficacy and reproducibility of future studies, a split-liver perfusion model was developed to allow simultaneous perfusion of left and right lobes, allowing one lobe to serve as a control for the other. Eleven discarded livers were surgically split, and both lobes perfused simultaneously on separate perfusion devices for 3 h at subnormothermic temperatures. Lobar perfusion parameters were also compared with whole livers undergoing perfusion. Similar to whole-liver perfusions, each lobe in the split-liver model exhibited a progressive decrease in arterial resistance and lactate levels throughout perfusion, which were not significantly different between right and left lobes. Split liver lobes also demonstrated comparable energy charge ratios. Ex situ split-liver perfusion is a novel experimental model that allows each graft to act as its own control. This model is particularly well suited for preclinical studies by avoiding the need for large numbers of enrolled livers necessary due to the heterogenous nature of discarded human liver research
The Importance of Being Grade 3:A Plea for a Three-tier Hybrid Classification System for Grade in Primary Non-muscle-invasive Bladder Cancer
Grade is an important determinant of progression in non-muscle-invasive bladder cancer. Although the World Health Organization (WHO) 2004/2016 grading system is recommended, other systems such as WHO1973 and WHO1999 are still widely used. Recently, a hybrid (three-tier) system was proposed, separating WHO2004/2016 high grade (HG) into HG/grade 2 (G2) and HG/G3 while maintaining low grade. We assessed the prognostic performance of HG/G3 and HG/G2. Three independent cohorts with 9712 primary (first diagnosis) Ta-T1 bladder tumors were analyzed. Time to progression was analyzed with cumulative incidence functions and Cox regression models. Harrell's C-index was used to assess discrimination. Time to progression was significantly shorter for HG/G3 than for HG/G2 in multivariable analyses (cohort 1: hazard ratio [HR] = 1.92; cohort 2: HR = 2.51, and cohort 3: HR = 1.69). Corresponding progression risks at 5 yr were 18%, 20%, and 18% for HG/G3 versus 7.3%, 7.5%, and 9.3% for HG/G2, respectively. Cox models using hybrid grade performed better than models with WHO2004/2016 (all cohorts; p < 0.001). For the three cohorts, C-indices for WHO2004/2016 were 0.69, 0.62, and 0.75, while, for hybrid grade, C-indices were 0.74, 0.68, and 0.78, respectively. Subdividing the HG category into HG/G2 and HG/G3 stratifies time to progression and supports the recommendation to adopt the hybrid grading system for Ta/T1 bladder cancers.</p
Endothelial Dysfunction in Steatotic Human Donor Livers: A Pilot Study of the Underlying Mechanism During Subnormothermic Machine Perfusion
Background: Steatosis is a major risk factor for primary nonfunction in liver transplantations. Steatotic livers recover poorly from ischemia reperfusion injury, in part due to alterations in the microcirculation, although the exact mechanism is unclear. In this study, we tested if there were any alterations in the shear stress sensing Kruppel-like factor 2 (KLF2) and its likely downstream consequences in the ex vivo perfused human liver endothelium, which would imply perturbations in microcirculatory flow in macrosteatotic livers disrupts laminar flow to evaluate if this is a potential therapeutic target for steatotic livers. Methods: Using a subnormothermic machine perfusion system, 5 macrosteatotic and 4 nonsteatotic human livers were perfused for 3 hours. Flow, resistance, and biochemical profile were monitored. Gene expression levels of nitric oxide synthase 3 (eNOS), KLF2, and thrombomodulin were determined. Nitric oxide (NO) was measured in the perfusion fluid and activation of eNOS was measured with Western blotting. Results: Flow dynamics, injury markers, and bile production were similar in both groups. Kruppel-like factor 2 expression was significantly higher in nonsteatotic livers. Western blotting analyses showed significantly higher levels of activated eNOS in nonsteatotic livers, consistent with an increase in NO production over time. Macrosteatotic livers showed decreased KLF2 upregulation, eNOS activity, and NO production during machine perfusion. Conclusions: These results indicate a perturbed KLF2 sensing in steatotic livers, which aligns with perturbed microcirculatory state. This may indicate endothelial dysfunction and contribute to poor posttransplantation outcomes in fatty livers, and further studies to confirm by evaluation of flow and testing treatments are warranted