2 research outputs found

    Data_Sheet_1.DOCX

    No full text
    <p>Uncovering the limiting factors for benthic algal distributions in lakes is of great importance to understanding of their role in global carbon cycling. However, limited is known about the benthic algal community distribution and how they are influenced by geographic distance and environmental variables in alpine lakes. Here, we investigated the benthic algal community compositions in the surface sediments of six lakes on the Qinghai-Tibetan Plateau (QTP), China (salinity ranging from 0.8 to 365.6 g/L; pairwise geographic distance among the studied lakes ranging 8–514 km) employing an integrated approach including Illumina-Miseq sequencing and environmental geochemistry. The results showed that the algal communities of the studied samples were mainly composed of orders of Bacillariales, Ceramiales, Naviculales, Oscillatoriales, Spirulinales, Synechococcales, and Vaucheriales. The benthic algal community compositions in these QTP lakes were significantly (p < 0.05) correlated with many environmental (e.g., dissolved inorganic and organic carbon, illumination intensity, total nitrogen and phosphorus, turbidity and water temperature) and spatial factors, and salinity did not show significant influence on the benthic algal community structures in the studied lakes. Furthermore, geographic distance showed strong, significant correlation (r = 0.578, p < 0.001) with the benthic algal community compositions among the studied lakes, suggesting that spatial factors may play important roles in influencing the benthic algal distribution. These results expand our current knowledge on the influencing factors for the distributions of benthic alga in alpine lakes.</p

    Kerr optical frequency division with integrated photonics for stable microwave and mmWave generation

    No full text
    Optical frequency division (OFD) has revolutionized microwave and mmWave generation and set spectral purity records owing to its unique capability to transfer high fractional stability from optical to electronic frequencies. Recently, rapid developments in integrated optical reference cavities and microresonator-based optical frequency combs (microcombs) have created a path to transform OFD technology to chip scale. Here, we demonstrate an ultra-low phase noise mmWave oscillator by leveraging integrated photonic components and Kerr optical frequency division. The oscillator derives its stability from an integrated CMOS-compatible SiN coil cavity, and the optical frequency division is achieved spontaneously through Kerr interaction between the injected reference lasers and soliton microcombs in the integrated SiN microresonator. Besides achieving record-low phase noise for integrated mmWave oscillators, our demonstration greatly simplifies the implementation of integrated OFD oscillators and could be useful in applications of Radar, spectroscopy, and astronomy
    corecore