61 research outputs found
Radiation tolerance of high-resistivity LBNL CCDs
Journal ArticleThick, fully-depleted p-channel charge-coupled devices (CCDs) have been developed at the Lawrence Berkeley National Laboratory (LBNL). These CCDs have several advantages over conventional n-channel CCDs, including enhanced quantum efficiency and reduced fringing at near-infrared wavelengths, a small point spread function, and improved radiation tolerance. Here we report results from the irradiation of CCDs with 12.5 and 55 MeV protons at the LBNL 88-Inch Cyclotron. These studies indicate that the CCDs still perform well after irradiation, even in the parameters in which significant degradation is expected: charge transfer efficiency, dark current, and isolated hot pixels. As expected, the radiation tolerance of the LBNL CCDs is significantly improved over conventional n-channel CCDs currently employed in space-based telescopes such as the Hubble Space Telescope (HST)
Radiation tolerance of fully-depleted P-channel CCDs designed for the SNAP satellite
Journal ArticleThick, fully depleted p-channel charge-coupled devices (CCDs) have been developed at the Lawrence Berkeley National Laboratory (LBNL). These CCDs have several advantages over conventional thin, n-channel CCDs, including enhanced quantum efficiency and reduced fringing at near-infrared wavelengths and improved radiation tolerance. Here we report results from the irradiation of CCDs with 12.5 and 55 MeV protons at the LBNL 88-Inch Cyclotron and with 0.1-1 MeV electrons at the LBNL 60Co source. These studies indicate that the LBNL CCDs perform well after irradiation, even in the parameters in which significant degradation is observed in other CCDs: charge transfer efficiency, dark current, and isolated hot pixels. Modeling the radiation exposure over a six-year mission lifetime with no annealing, we expect an increase in dark current of 20 e /pixel/hr, and a degradation of charge transfer efficiency in the parallel direction of 3 10 6 and 1 10 6 in the serial direction. The dark current is observed to improve with an annealing cycle, while the parallel CTE is relatively unaffected and the serial CTE is somewhat degraded. As expected, the radiation tolerance of the p-channel LBNL CCDs is significantly improved over the conventional n-channel CCDs that are currently employed in space-based telescopes such as the Hubble Space Telescope
Noise and Bias In Square-Root Compression Schemes
We investigate data compression schemes for proposed all-sky diffraction-limited visible/NIR sky surveys aimed at the dark-energy problem. We show that lossy square-root compression to 1 bit pixel^(-1) of noise, followed by standard lossless compression algorithms, reduces the images to 2.5–4 bits pixel^(-1), depending primarily upon the level of cosmic-ray contamination of the images. Compression to this level adds noise equivalent to ≤ 10% penalty in observing time. We derive an analytic correction to flux biases inherent to the square-root compression scheme. Numerical tests on simple galaxy models confirm that galaxy fluxes and shapes are measured with systematic biases ≾ 10^-4 induced by the compression scheme, well below the requirements of supernova and weak gravitational lensing dark-energy experiments. In a related investigation, Vanderveld and coworkers bound the shape biases using realistic simulated images of the high-Galactic–latitude sky. The square-root preprocessing step has advantages over simple (linear) decimation when there are many bright objects or cosmic rays in the field, or when the background level will vary
Radiation Tolerance of Fully-Depleted P-Channel CCDs Designed for the SNAP Satellite
Thick, fully depleted p-channel charge-coupled devices (CCDs) have been
developed at the Lawrence Berkeley National Laboratory (LBNL). These CCDs have
several advantages over conventional thin, n-channel CCDs, including enhanced
quantum efficiency and reduced fringing at near-infrared wavelengths and
improved radiation tolerance. Here we report results from the irradiation of
CCDs with 12.5 and 55 MeV protons at the LBNL 88-Inch Cyclotron and with 0.1-1
MeV electrons at the LBNL Co60 source. These studies indicate that the LBNL
CCDs perform well after irradiation, even in the parameters in which
significant degradation is observed in other CCDs: charge transfer efficiency,
dark current, and isolated hot pixels. Modeling the radiation exposure over a
six-year mission lifetime with no annealing, we expect an increase in dark
current of 20 e/pixel/hr, and a degradation of charge transfer efficiency in
the parallel direction of 3e-6 and 1e-6 in the serial direction. The dark
current is observed to improve with an annealing cycle, while the parallel CTE
is relatively unaffected and the serial CTE is somewhat degraded. As expected,
the radiation tolerance of the p-channel LBNL CCDs is significantly improved
over the conventional n-channel CCDs that are currently employed in space-based
telescopes such as the Hubble Space Telescope.Comment: 11 pages, 10 figures, submitted to IEEE Transaction
The DESI Experiment, a whitepaper for Snowmass 2013
The Dark Energy Spectroscopic Instrument (DESI) is a massively multiplexed
fiber-fed spectrograph that will make the next major advance in dark energy in
the timeframe 2018-2022. On the Mayall telescope, DESI will obtain spectra and
redshifts for at least 18 million emission-line galaxies, 4 million luminous
red galaxies and 3 million quasi-stellar objects, in order to: probe the
effects of dark energy on the expansion history using baryon acoustic
oscillations (BAO), measure the gravitational growth history through
redshift-space distortions, measure the sum of neutrino masses, and investigate
the signatures of primordial inflation. The resulting 3-D galaxy maps at z<2
and Lyman-alpha forest at z>2 will make 1%-level measurements of the distance
scale in 35 redshift bins, thus providing unprecedented constraints on
cosmological models.Comment: 14 pages, 4 figures, a White Paper for Snowmass 201
Recommended from our members
High-voltage-compatible, fully depleted CCDs
We describe charge-coupled device (CCD) developmentactivities at the Lawrence Berkeley National Laboratory (LBNL).Back-illuminated CCDs fabricated on 200-300 mu m thick, fully depleted,high-resistivity silicon substrates are produced in partnership with acommercial CCD foundry.The CCDs are fully depleted by the application ofa substrate bias voltage. Spatial resolution considerations requireoperation of thick, fully depleted CCDs at high substrate bias voltages.We have developed CCDs that are compatible with substrate bias voltagesof at least 200V. This improves spatial resolution for a given thickness,and allows for full depletion of thicker CCDs than previously considered.We have demonstrated full depletion of 650-675 mu m thick CCDs, withpotential applications in direct x-ray detection. In this work we discussthe issues related to high-voltage operation of fully depleted CCDs, aswell as experimental results on high-voltage-compatible CCDs
Recommended from our members
BigBOSS: The Ground-Based Stage IV BAO Experiment
The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment
CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
CMB-S4---the next-generation ground-based cosmic microwave background (CMB)
experiment---is set to significantly advance the sensitivity of CMB
measurements and enhance our understanding of the origin and evolution of the
Universe, from the highest energies at the dawn of time through the growth of
structure to the present day. Among the science cases pursued with CMB-S4, the
quest for detecting primordial gravitational waves is a central driver of the
experimental design. This work details the development of a forecasting
framework that includes a power-spectrum-based semi-analytic projection tool,
targeted explicitly towards optimizing constraints on the tensor-to-scalar
ratio, , in the presence of Galactic foregrounds and gravitational lensing
of the CMB. This framework is unique in its direct use of information from the
achieved performance of current Stage 2--3 CMB experiments to robustly forecast
the science reach of upcoming CMB-polarization endeavors. The methodology
allows for rapid iteration over experimental configurations and offers a
flexible way to optimize the design of future experiments given a desired
scientific goal. To form a closed-loop process, we couple this semi-analytic
tool with map-based validation studies, which allow for the injection of
additional complexity and verification of our forecasts with several
independent analysis methods. We document multiple rounds of forecasts for
CMB-S4 using this process and the resulting establishment of the current
reference design of the primordial gravitational-wave component of the Stage-4
experiment, optimized to achieve our science goals of detecting primordial
gravitational waves for at greater than , or, in the
absence of a detection, of reaching an upper limit of at CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note:
text overlap with arXiv:1907.0447
CMB-S4
We describe the stage 4 cosmic microwave background ground-based experiment CMB-S4
- …