88 research outputs found
Pseudogap phase of cuprate superconductors confined by Fermi surface topology
The properties of cuprate high-temperature superconductors are largely shaped
by competing phases whose nature is often a mystery. Chiefly among them is the
pseudogap phase, which sets in at a doping that is material-dependent.
What determines is currently an open question. Here we show that the
pseudogap cannot open on an electron-like Fermi surface, and can only exist
below the doping at which the large Fermi surface goes from hole-like
to electron-like, so that . We derive this result from
high-magnetic-field transport measurements in
LaNdSrCuO under pressure, which reveal a large and
unexpected shift of with pressure, driven by a corresponding shift in
. This necessary condition for pseudogap formation, imposed by details
of the Fermi surface, is a strong constraint for theories of the pseudogap
phase. Our finding that can be tuned with a modest pressure opens a new
route for experimental studies of the pseudogap.Comment: 15 pages, 5 figures, 7 supplemental figure
A Human-Like Senescence-Associated Secretory Phenotype Is Conserved in Mouse Cells Dependent on Physiological Oxygen
Cellular senescence irreversibly arrests cell proliferation in response to oncogenic stimuli. Human cells develop a senescence-associated secretory phenotype (SASP), which increases the secretion of cytokines and other factors that alter the behavior of neighboring cells. We show here that “senescent” mouse fibroblasts, which arrested growth after repeated passage under standard culture conditions (20% oxygen), do not express a human-like SASP, and differ from similarly cultured human cells in other respects. However, when cultured in physiological (3%) oxygen and induced to senesce by radiation, mouse cells more closely resemble human cells, including expression of a robust SASP. We describe two new aspects of the human and mouse SASPs. First, cells from both species upregulated the expression and secretion of several matrix metalloproteinases, which comprise a conserved genomic cluster. Second, for both species, the ability to promote the growth of premalignant epithelial cells was due primarily to the conserved SASP factor CXCL-1/KC/GRO-α. Further, mouse fibroblasts made senescent in 3%, but not 20%, oxygen promoted epithelial tumorigenesis in mouse xenographs. Our findings underscore critical mouse-human differences in oxygen sensitivity, identify conditions to use mouse cells to model human cellular senescence, and reveal novel conserved features of the SASP
Reliability and validity of the adapted Greek version of scoliosis research society – 22 (SRS-22) questionnaire
<p>Abstract</p> <p>Background</p> <p>The SRS-22 is a valid instrument for the assessment of the health related quality of life of patients with Idiopathic scoliosis. The SRS-22 questionnaire was developed in USA and has been widely used in the English speaking countries. Recently it has been translated and validated in many other languages. The purpose of this study is to evaluate the reliability and validity of the adapted Greek version of the refined Scoliosis Research Society-22 Questionnaire.</p> <p>Methods</p> <p>Following the steps of cross – cultural adaptation the adapted Greek version of the SRS-22 questionnaire and a validated Greek version of the SF-36 questionnaire were mailed to 68 patients treated surgically for Idiopathic Scoliosis. 51 out of the 68 patients returned the 1<sup>st </sup>set of questionnaires, while a second set was emailed to 30 randomly selected patients of the first time responders. 20 out of the 30 patients returned the 2<sup>nd </sup>set. The mean age at the time of operation was16,2 years and the mean age at the time of evaluation was 21,2 years. Descriptive statistics for content analysis were calculated. Reliability assessment was determined by estimating Cronbach's α and intraclass correlation coefficient (ICC) respectively. Concurrent validity was evaluated by comparing SRS-22 domains with relevant domains in the SF-36 questionnaire using Pearson's Correlation Coefficient (r).</p> <p>Results</p> <p>The calculated Cronbach's α of internal consistency for three of the corresponding domains (pain 0.85; mental health 0.87; self image 0.83) were very satisfactory and for two domains (function/activity 0.72 and satisfaction 0.67) were good. The ICC of all domains of SRS-22 questionnaire was high (ICC>0.70), demonstrating very satisfactory or excellent test/retest reproducibility. Considering concurrent validity all correlations were found to be statistically significant at the 0.01 level among related domains and generally demonstrated high correlation coefficient.</p> <p>Conclusion</p> <p>The adapted Greek version of the SRS-22 questionnaire is valid and reliable and can be used for the assessment of the outcome of the treatment of the Greek speaking patients with idiopathic scoliosis.</p
Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming
Human mesenchymal stromal cells (MSC) have been shown to dampen immune response and promote tissue repair, but the underlying mechanisms are still under investigation. Herein, we demonstrate that umbilical cord-derived MSC (UC-MSC) alter the phenotype and function of monocyte-derived dendritic cells (DC) through lactate-mediated metabolic reprogramming. UC-MSC can secrete large quantities of lactate and, when present during monocyte-to-DC differentiation, induce instead the acquisition of M2-macrophage features in terms of morphology, surface markers, migratory properties and antigen presentation capacity. Microarray expression profiling indicates that UC-MSC modify the expression of metabolic-related genes and induce a M2-macrophage expression signature. Importantly, monocyte-derived DC obtained in presence of UC-MSC, polarize naïve allogeneic CD4+ T-cells into Th2 cells. Treatment of UC-MSC with an inhibitor of lactate dehydrogenase strongly decreases lactate concentration in culture supernatant and abrogates the effect on monocyte-to- DC differentiation. Metabolic analysis further revealed that UC-MSC decrease oxidative phosphorylation in differentiating monocytes while strongly increasing the spare respiratory capacity proportional to the amount of secreted lactate. Because both MSC and monocytes are recruited in vivo at the site of tissue damage and inflammation, we propose the local increase of lactate concentration induced by UC-MSC and the consequent enrichment in M2-macrophage generation as a mechanism to achieve immunomodulation
Knockdown of MBP-1 in Human Foreskin Fibroblasts Induces p53-p21 Dependent Senescence
MBP-1 acts as a general transcriptional repressor. Overexpression of MBP-1 induces cell death in a number of cancer cells and regresses tumor growth. However, the function of endogenous MBP-1 in normal cell growth regulation remains unknown. To unravel the role of endogenous MBP-1, we knocked down MBP-1 expression in primary human foreskin fibroblasts (HFF) by RNA interference. Knockdown of MBP-1 in HFF (HFF-MBPsi-4) resulted in an induction of premature senescence, displayed flattened cell morphology, and increased senescence-associated beta-galactosidase activity. FACS analysis of HFF-MBPsi-4 revealed accumulation of a high number of cells in the G1-phase. A significant upregulation of cyclin D1 and reduction of cyclin A was detected in HFF-MBPsi-4 as compared to control HFF. Senescent fibroblasts exhibited enhanced expression of phosphorylated and acetylated p53, and cyclin-dependent kinase inhibitor, p21. Further analysis suggested that promyolocytic leukemia protein (PML) bodies are dramatically increased in HFF-MBPsi-4. Together, these results demonstrated that knockdown of endogenous MBP-1 is involved in cellular senescence of HFF through p53-p21 pathway
Potential Involvement of LOX-1 in Functional Consequences of Endothelial Senescence
Numerous studies have described the process of senescence associated with accumulation of oxidative damage, mutations and decline in proliferative potential. Although the changes observed in senescent cells are likely to result in significant phenotypic alterations, the studies on consequences of endothelial senescence, especially in relation to aging-associated diseases, are scarce. We have analyzed effects of senescence on the functions of endothelial cells relevant to the development of atherosclerosis including angiogenesis, adhesion, apoptosis and inflammation. In the course of progressing through the passages, human umbilical vein endothelial cells (HUVECs) displayed significant increase in size (+36% passage 12 vs. passage 4 , p<0.001) and reduction in both basal and VEGF-stimulated tube formation. The analysis of a scavenger receptor LOX-1, a key molecule implicated in atherogenesis, revealed a significant decline of its message (mRNA) and protein content in senescent endothelial cells (−33%) and in aortas of 50 wk (vs. 5 wk) old mice (all p<0.01). These effects were accompanied by a marked reduction of the basal expression of VCAM-1 and ICAM-1. Compared to early cultures, late passage HUVECs also exhibited nuclear translocation of NF-κB (p65) and reciprocal shifts in BAX and BCL2 protein content resulting in almost 2-fold increase in BAX/BCL2 ratio and 3-fold increase in apoptotic response to TNFα exposure (p<0.04). These changes in senescent endothelial cells are suggestive of aberrant responses to physiological stimuli resulting in a less permissive environment for tissue remodeling and progression of diseases requiring angiogenesis and cell adhesion in elderly, possibly, mediated by LOX-1
SCN5A mutations in 442 neonates and children: genotype-phenotype correlation and identification of higher-risk subgroups.
Aims
To clarify the clinical characteristics and outcomes of children with SCN5A-mediated disease and to improve their risk stratification.
Methods and results
A multicentre, international, retrospective cohort study was conducted in 25 tertiary hospitals in 13 countries between 1990 and 2015. All patients ≤16 years of age diagnosed with a genetically confirmed SCN5A mutation were included in the analysis. There was no restriction made based on their clinical diagnosis. A total of 442 children {55.7% boys, 40.3% probands, median age: 8.0 [interquartile range (IQR) 9.5] years} from 350 families were included; 67.9% were asymptomatic at diagnosis. Four main phenotypes were identified: isolated progressive cardiac conduction disorders (25.6%), overlap phenotype (15.6%), isolated long QT syndrome type 3 (10.6%), and isolated Brugada syndrome type 1 (1.8%); 44.3% had a negative electrocardiogram phenotype. During a median follow-up of 5.9 (IQR 5.9) years, 272 cardiac events (CEs) occurred in 139 (31.5%) patients. Patients whose mutation localized in the C-terminus had a lower risk. Compound genotype, both gain- and loss-of-function SCN5A mutation, age ≤1 year at diagnosis in probands and age ≤1 year at diagnosis in non-probands were independent predictors of CE.
Conclusion
In this large paediatric cohort of SCN5A mutation-positive subjects, cardiac conduction disorders were the most prevalent phenotype; CEs occurred in about one-third of genotype-positive children, and several independent risk factors were identified, including age ≤1 year at diagnosis, compound mutation, and mutation with both gain- and loss-of-function
Integrin/Fak/Src-mediated regulation of cell survival and anoikis in human intestinal epithelial crypt cells: selective engagement and roles of PI3-K isoform complexes
In human intestinal epithelial crypt (HIEC) cells, the PI3-K/Akt-1 pathway is crucial for the promotion of cell survival and suppression of anoikis. Class I PI3-K consists of a complex formed by a catalytic (C) and regulatory (R) subunit. Three R (p85α, β, and p55γ) and four C (p110α, β, γ and δ) isoforms are known. Herein, we analyzed the expression of PI3-K isoforms in HIEC cells and determined their roles in cell survival, as well as in the β1 integrin/Fak/Src-mediated suppression of anoikis. We report that: (1) the predominant PI3-K complexes expressed by HIEC cells are p110α/p85β and p110α/p55γ; (2) the inhibition and/or siRNA-mediated expression silencing of p110α, but not that of p110β, γ or δ, results in Akt-1 down-activation and consequent apoptosis; (3) the expression silencing of p85β or p55γ, but not that of p85α, likewise induces Akt-1 down-activation and apoptosis; however, the impact of a loss of p55γ on both Akt-1 activation and cell survival is significantly greater than that from the loss of p85β; and (4) both the p110α/p85β and p110α/p55γ complexes are engaged by β1 integrin/Fak/Src signaling; however, the engagement of p110α/p85β is primarily Src-dependent, whereas that of p110α/p55γ is primarily Fak-dependent (but Src-independent). Hence, HIEC cells selectively express PI3-K isoform complexes, translating into distinct roles in Akt-1 activation and cell survival, as well as in a selective engagement by Fak and/or Src within the context of β1 integrin/Fak/Src-mediated suppression of anoikis
Global data on earthworm abundance, biomass, diversity and corresponding environmental properties
14 p.Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change
- …