7,567 research outputs found

    Neuro-Fuzzy Computing System with the Capacity of Implementation on Memristor-Crossbar and Optimization-Free Hardware Training

    Full text link
    In this paper, first we present a new explanation for the relation between logical circuits and artificial neural networks, logical circuits and fuzzy logic, and artificial neural networks and fuzzy inference systems. Then, based on these results, we propose a new neuro-fuzzy computing system which can effectively be implemented on the memristor-crossbar structure. One important feature of the proposed system is that its hardware can directly be trained using the Hebbian learning rule and without the need to any optimization. The system also has a very good capability to deal with huge number of input-out training data without facing problems like overtraining.Comment: 16 pages, 11 images, submitted to IEEE Trans. on Fuzzy system

    Measurement-Assisted Quantum Communication in Spin Channels with Dephasing

    Get PDF
    We propose a protocol for countering the effects of dephasing in quantum state transfer over a noisy spin channel weakly coupled to the sender and receiver qubits. Our protocol, based on performing regular global measurements on the channel, significantly suppresses the nocuous environmental effects and offers much higher fidelities than the traditional no-measurement approach. Our proposal can also operate as a robust two-qubit entangling gate over distant spins. Our scheme counters any source of dephasing, including those for which the well established dynamical decoupling approach fails. Our protocol is probabilistic, given the intrinsic randomness in quantum measurements, but its success probability can be maximized by adequately tuning the rate of the measurements.Comment: 8 pages, 9 figure

    Entanglement Transfer Through an Antiferromagnetic Spin Chain

    Get PDF
    We study the possibility of using an uniformly coupled finite antiferromagnetic spin-1/2 Heisenberg chain as a channel for transmitting entanglement. One member of a pair of maximally entangled spins is initially appended to one end of a chain in its ground state and the dynamical propagation of this entanglement to the other end is calculated. We show that compared to the analogous scheme with a ferromagnetic chain in its ground state, here the entanglement is transmitted faster, with less decay, with a much higher purity and as a narrow pulse form rising non-analytically from zero. Here non-zero temperatures and depolarizing environments are both found to be less destructive in comparison to the ferromagnetic case. The entanglement is found to propagate through the chain in a peculiar fashion whereby it hops to skip alternate sites.Comment: 5 pages, 5 figures. Modified version with more explanatio

    Optimizing the remeshing procedure by computational cost estimation of adaptive fem technique

    Get PDF
    The objective of adaptive techniques is to obtain a mesh which is optimal in the sense that the computational costs involved are minimal under the constraint that the error in the finite element solution is acceptable within a certain limit. But adaptive FEM procedure imposes extra computational cost to the solution. If we repeat the adaptive process without any limit, it will reduce efficiency of remeshing procedure. Sometimes it is better to take an initial very fine mesh instead of multilevel mesh refinement. So it is needed to estimate the computational cost of adaptive finite element technique and compare it with the FEM computational cost. The remeshing procedure can be optimized by balancing these computational costs
    • …
    corecore