
XII International Conference on Computational Plasticity. Fundamentals and Applications
COMPLAS XII

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds)

OPTIMIZING THE REMESHING PROCEDURE BY 
COMPUTATIONAL COST ESTIMATION OF ADAPTIVE FEM 

TECHNIQUE

FARDIN BAYAT*, HAMID MOSLEMI†

* Civil Engineering Department, Qazvin Branch, 
Islamic Azad University, Qazvin, Iran

e-mail: fardin_bayat_q@yahoo.com, www.qiau.ac.ir

† Civil Engineering Department, Shahed University
Persian Gulf Highway, Tehran, Iran

email: h.moslemi@shahed.ac.ir, www.shahed.ac.ir/moslemi

Key words: Adaptive Finite Element Method, Remeshing, Computational Cost, Numerical 
Optimization.

Abstract. The objective of adaptive techniques is to obtain a mesh which is optimal in the 
sense that the computational costs involved are minimal under the constraint that the error in 
the finite element solution is acceptable within a certain limit. But adaptive FEM procedure 
imposes extra computational cost to the solution. If we repeat the adaptive process without 
any limit, it will reduce efficiency of remeshing procedure. Sometimes it is better to take an 
initial very fine mesh instead of multilevel mesh refinement. So it is needed to estimate the 
computational cost of adaptive finite element technique and compare it with the FEM 
computational cost. The remeshing procedure can be optimized by balancing these
computational costs. 

1 INTRODUCTION
Optimization is an important tool in decision science and in the analysis of physical 

systems. In an industrial context, the aim of the mechanical simulations in engineering design 
is not only to obtain greatest quality but more often a compromise between the desired quality 
and the computation cost (CPU time, storage, software, competence, human cost, computer 
used). The accuracy in numerical analysis of finite element solution strongly depends on the 
quality of FE mesh. Various mesh refinement techniques have been implemented to provide a 
physically acceptable solution. The objective of adaptive technique is to obtain a mesh which 
is optimal in the sense that the computational costs are minimal under the constraints, and the 
error of finite element solution is acceptable within a certain limit. The error estimation in 
numerical computations is obviously as old as the numerical computations themselves. The 
very first paper in error estimation was reported by Richardson [1] for practical computations 
utilizing finite differences. The process of error estimation in finite element analysis was 
originally introduced by Babuska and Rheinboldt [2]. This process considers local residuals 
of the numerical solution. By investigating the residuals occurring in a patch of elements, or 
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even in a single element it becomes possible to estimate the errors which arise locally, usually 
in the norm of energy. In the error estimation process two main aims are followed; firstly, the 
determination of error in the mesh and secondly, the reduction of error to an acceptable value 
by adaptive mesh refinement. Various error estimators are proposed in the literature [2], 
which can be divided mainly into two categories. A priori error estimation is based on the 
knowledge of characteristics of the solution and provides qualitative information about the 
asymptotic rate of convergence as the number of degrees of freedom goes to infinity. A
posteriori error estimation employs the solution obtained by the numerical analysis, in 
addition to a priori assumptions about the solution. This method can provide quantitatively 
accurate measures of the discretization error, while a priori estimate method cannot. In the 
present study, a posteriori error estimator developed by Zienkiewicz and Zhu [3] is employed 
by using an h-refinement adaptive procedure. Despite of simplicity of this error estimator, it is 
reasonably accurate. Bellenger and Coorevits [4] proposed the use of alternative mesh 
refinement criteria based on: prescribed number of elements with maximum accuracy, 
prescribed CPU time with maximum accuracy and prescribed memory size with maximum 
accuracy.

2 ERROR ESTIMATION AND ADAPTIVE MESH REFINEMENT
The criterion for determining this optimal mesh is the value of error in approximated finite

element solution. According to the adaptive mesh refinement technique the optimal mesh is 
obtained by keeping this error within prescribed bounds. For most problems there is not exact 
solution, so exact error is not available. An improved solution is used instead of exact solution 
to compute an estimated error. The finite element analysis with displacements results in
piecewise continuous stresses, while actual stresses may be continuous throughout the 
domain. By smoothing the piecewise continuous stresses, an improved solution can be 
obtained. In order to obtain an improved solution, the nodal smoothing procedure is 
performed using the weighted superconvergent patch recovery (WSPR) technique, proposed
by Khoei et al. for cohesive zone model [5] and ductile crack growth [6]. Having computed 
the improved stresses, the error can be approximated by

* * ˆσ σ≈ = −e e σ σ (1)

where σe is the exact error and 
*
σe the estimated error. Since the pointwise error becomes 

locally infinite in critical points, such as crack tip, the error estimator can be replaced by a 
global parameter using the L2 norm of error defined as:

( )
1

* * * 2

Ω
ˆ ˆ ˆ( ) ( ) dΩσ = − = − −∫ Te σ σ σ σ σ σ (2)

In adaptive mesh refinement, the L2 norm for each element is a more desirable quantity to 
optimize the mesh. By changing the whole domain to each element domain, this quantity is 
achievable. Hence, the square of L2 norm of the overall domain can be obtained by summing 
element contributions, i.e.
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where i represents an element contribution and m is the total number of elements. To 
normalize the value of error norm, it is divided to the state variable (such as stress) norm. 
Thus, the overall percentage error is defined as

ˆ
eσθ
σ

= (4)

This relative error norm can be used in the mesh refinement procedure. The remeshing 
procedure chosen here is based on h-adaptive mesh refinement, in which the polynomial order 
of shape functions remains constant during successive mesh refinements. The distribution of 
error norm across the domain indicates which portions need refinement and which other parts 
need de-refinement, or coarsening elements. Since the total error permissible must be less 
than a certain value, it is a simple matter to search the design field for a new solution in which 
the total error satisfies this requirement. In fact, after remeshing each element must obtain the
same error and the overall percentage error must be less than the target percentage error, i.e.

aim
aim ˆ

eσθ θ
σ

≤ = (5)

The size of elements in new mesh depends on the relative error and the rate of 
convergence. The rate of convergence of standard elements is proportional to the order of 
shape functions, however, in the case of crack tip problems, it is proportional to the order of 
singularity. Thus, if h represents the size of element and λ denotes the rate of convergence, the 
new element size can be obtained as

( )
( )

1/

aim
new old
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e
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σ

λ
 
 =
  

i
i i

i

h h (6)

After indicating the size of elements from Eq. (6), a mesh satisfying the requirements will 
be finally generated by an efficient mesh generator which allows the new mesh to be 
constructed according to a predetermined size. In order to prevent mesh generation difficulties 
due to very small and large elements, the element size is limited by an upper and a lower 
bound.

3 NUMERICAL OPTIMIZATION OF REMESHING
Although adaptive remeshing procedure reduces the discretization error of the solution but

if we repeat the adaptive process without any limit, it will reduce efficiency of remeshing 
procedure. Thus we should stop remeshig process at a certain step. Firstly, we estimate the 
number of nodes in each remeshing step. For this purpose an extrapolation is carried out on 
available data from last remeshing steps. In this study, power extrapolation (𝑦𝑦 = 𝐴𝐴𝑛𝑛𝑥𝑥) is used 
for prediction of next steps. Now we estimate the reduction of error in next steps. It is obvious 
that the estimated error converges to a certain error in last steps of remeshing. Therefore more 
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remeshing steps are not efficient. An extrapolation can be used again to see how error reduces 
with increasing the degrees of freedom of model. The most important part of numerical 
optimization of remeshing procedure is the control of computational cost. It consists of 
remeshing procedure and FEM computational cost. Flops (Floating-point Operations Per 
Second) is a useful parameter for estimating the computational cost of a procedure. Each 
operation takes some flops depending on the complexity of the operation. The computational 
cost grows drastically in the last steps of remeshing process. This growth can be predicted by 
an extrapolation function. It is evident that final steps of remeshing are not efficient, because 
of low error reduction and high computational cost. Thus we can define an inefficiency 
parameter for each remeshing step as the required flops for 1% error reduction in that
remeshing step. If this inefficiency parameter exceeds a predefined limit we will stop the 
remeshing process.

4 NUMERICAL SIMULATION RESULTS
In order to demonstrate the performance of proposed optimization strategy an example is

analyzed numerically. The finite element model has been implemented using the standard 
isoparametric linear triangular elements. In addition, various uniform and adaptive mesh 
refinements are implemented to investigate the efficiency of error estimation and mesh 
refinement procedures. The entire process of simulation has been automatically performed
without user intervention. This example presents a rectangular plate with a circular hole 
subjected to a uniform load at one edge. The material properties are as follows; E = 2.1×106

kg/cm2, ν = 0.3. Two different simulations have been performed here. The first simulation has 
been carried out using a uniform fine FE mesh with no refinement. The next simulations 
correspond to adaptive FE analyses. Fig. 1 presents the uniform and adapted meshes during 
the adaptive remeshing.

Figure 1: (a) The uniform and (b-d) adapted meshes during adaptive remeshing procedure
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In the simulation with fine uniform mesh the estimated error was 9.6%, while the total 
flops was approximately 2.2×106. On the other hand, in adaptive remeshing procedure we 
have approached to 10% margin of error in the third step of remeshing. If we sum all flops in 
these three steps, it will result 2.2×106 flops. It shows that the adaptive remeshing procedure 
improves the mesh quality without any extra computational cost. If we want to continue the 
remeshing process in next steps, we should predict the number of nodes, error and flops in 
next steps. If we extrapolate these parameters from the data available for the three previous 
steps with a power function, we can predict them for the next steps. Fig. 2 shows the 
extrapolated function for predicting the number of nodes in different remeshing steps. Fig. 3 
shows how the estimated error reduces as the number of nodes increase. It is obvious that we 
have less efficiency in error reduction for next remeshing steps. Finally, the growth rate of 
flops in different remeshing steps is shown in Fig. 4. 

Figure 2: Predicted number of nodes in different remeshing steps

Figure 3: The variation of predicted error with number of nodes
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Figure 4: The variation of flops with number of nodes

It can be concluded from these charts that we achieve low error reduction with high 
computational cost in last remeshing steps. These results are summarized in Table 1. Thus, we 
should stop adaptive remeshing procedure in a certain step to optimize this process.

Table 1: Comparison of  predicted error and flops in different remeshing steps

Remeshing Step Error Flops Flops for 1% error reduction 
1 16.92 360402 - 
2 12.12 755861 82334 
3 9.99 1160256 189974 
4 8.70 1575979 322765 
5 7.89 1959776 471370 

In this example we accept 300,000 flops for 1% error reduction. Table 1. shows that in 
fourth remeshing step flops for 1% error reduction exceeds the specified limitation and we 
will stop the remeshing procedure in third step.
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