1,795 research outputs found

    The clinical utility of the middle latency and 40Hz auditory evoked potentials in audiological electrodiagnosis

    Get PDF
    The two elcctrophysiological tests currently favoured in the clinical measurement of hearing threshold arc the brainstorm evoked potential (BAEP) and the slow vertex response (SVR). However, both tests possess disadvantages. The BAEP is the test of choice in younger patients as it is stable at all levels of arousal, but little information has been obtained to date at a range of frequencies. The SVR is frequency specific but is unreliable in certain adult subjects and is unstable during sleep or in young children. These deficiencies have prompted research into a third group of potentials, the middle latency response (MLR) and the 40HZ responses. This research has compared the SVR and 40HZ response in waking adults and reports that the 40HZ test can provide a viable alternative to the SVR provided that a high degree of subject relaxation is ensured. A second study examined the morphology of the MLR and 40HZ during sleep. This work suggested that these potentials arc markedly different during sleep and that methodological factors have been responsible for masking these changes in previous studies. The clinical possibilities of tone pip BAEPs were then examined as these components were proved to be the only stable responses present in sleep. It was found that threshold estimates to 5OOHz, lOOOHz and 4000Hz stimuli could be made to within 15dBSL in most cases. A final study looked more closely at methods of obtaining frequency specific information in sleeping subjects. Threshold estimates were made using established BAEP parameters and this was compared to a 40HZ procedure which recorded a series of BAEPs over a 100msec. time sweep. Results indicated that the 40mHz procedure was superior to existing techniques in estimating threshold to low frequency stimuli. This research has confirmed a role for the MLR and 40Hz response as alternative measures of hearing capability in waking subjects and proposes that the 40Hz technique is useful in measuring frequency specific thresholds although the responses recorded derive primarily from the brainstem

    Selfduality for coupled Potts models on the triangular lattice

    Get PDF
    We present selfdual manifolds for coupled Potts models on the triangular lattice. We exploit two different techniques: duality followed by decimation, and mapping to a related loop model. The latter technique is found to be superior, and it allows to include three-spin couplings. Starting from three coupled models, such couplings are necessary for generating selfdual solutions. A numerical study of the case of two coupled models leads to the identification of novel critical points

    Critical Exponents of the Four-State Potts Model

    Full text link
    The critical exponents of the four-state Potts model are directly derived from the exact expressions for the latent heat, the spontaneous magnetization, and the correlation length at the transition temperature of the model.Comment: LaTex, 7 page

    Exact results for the zeros of the partition function of the Potts model on finite lattices

    Full text link
    The Yang-Lee zeros of the Q-state Potts model are investigated in 1, 2 and 3 dimensions. Analytical results derived from the transfer matrix for the one-dimensional model reveal a systematic behavior of the locus of zeros as a function of Q. For 1<Q<2 the zeros in the complex x=exp(βHq)x=\exp(\beta H_q) plane lie inside the unit circle, while for Q>2 they lie outside the unit circle for finite temperature. In the special case Q=2 the zeros lie exactly on the unit circle as proved by Lee and Yang. In two and three dimensions the zeros are calculated numerically and behave in the same way. Results are also presented for the critical line of the Potts model in an external field as determined from the zeros of the partition function in the complex temperature plane.Comment: 15 pages, 6 figures, RevTe

    Partition function zeros of the Q-state Potts model for non-integer Q

    Full text link
    The distribution of the zeros of the partition function in the complex temperature plane (Fisher zeros) of the two-dimensional Q-state Potts model is studied for non-integer Q. On L×LL\times L self-dual lattices studied (L8L\le8), no Fisher zero lies on the unit circle p0=eiθp_0=e^{i\theta} in the complex p=(eβJ1)/Qp=(e^{\beta J}-1)/\sqrt{Q} plane for Q<1, while some of the Fisher zeros lie on the unit circle for Q>1 and the number of such zeros increases with increasing Q. The ferromagnetic and antiferromagnetic properties of the Potts model are investigated using the distribution of the Fisher zeros. For the Potts ferromagnet we verify the den Nijs formula for the thermal exponent yty_t. For the Potts antiferromagnet we also verify the Baxter conjecture for the critical temperature and present new results for the thermal exponents in the range 0<Q<3.Comment: 12 pages, 7 figures, RevTe

    Random Tilings: Concepts and Examples

    Full text link
    We introduce a concept for random tilings which, comprising the conventional one, is also applicable to tiling ensembles without height representation. In particular, we focus on the random tiling entropy as a function of the tile densities. In this context, and under rather mild assumptions, we prove a generalization of the first random tiling hypothesis which connects the maximum of the entropy with the symmetry of the ensemble. Explicit examples are obtained through the re-interpretation of several exactly solvable models. This also leads to a counterexample to the analogue of the second random tiling hypothesis about the form of the entropy function near its maximum.Comment: 32 pages, 42 eps-figures, Latex2e updated version, minor grammatical change

    Exact Potts Model Partition Functions for Strips of the Honeycomb Lattice

    Full text link
    We present exact calculations of the Potts model partition function Z(G,q,v)Z(G,q,v) for arbitrary qq and temperature-like variable vv on nn-vertex strip graphs GG of the honeycomb lattice for a variety of transverse widths equal to LyL_y vertices and for arbitrarily great length, with free longitudinal boundary conditions and free and periodic transverse boundary conditions. These partition functions have the form Z(G,q,v)=j=1NZ,G,λcZ,G,j(λZ,G,j)mZ(G,q,v)=\sum_{j=1}^{N_{Z,G,\lambda}} c_{Z,G,j}(\lambda_{Z,G,j})^m, where mm denotes the number of repeated subgraphs in the longitudinal direction. We give general formulas for NZ,G,jN_{Z,G,j} for arbitrary LyL_y. We also present plots of zeros of the partition function in the qq plane for various values of vv and in the vv plane for various values of qq. Explicit results for partition functions are given in the text for Ly=2,3L_y=2,3 (free) and Ly=4L_y=4 (cylindrical), and plots of partition function zeros are given for LyL_y up to 5 (free) and Ly=6L_y=6 (cylindrical). Plots of the internal energy and specific heat per site for infinite-length strips are also presented.Comment: 39 pages, 34 eps figures, 3 sty file

    ERβ Binds N-CoR in the Presence of Estrogens via an LXXLL-like Motif in the N-CoR C-terminus

    Get PDF
    Nuclear receptors (NRs) usually bind the corepressors N-CoR and SMRT in the absence of ligand or in the presence of antagonists. Agonist binding leads to corepressor release and recruitment of coactivators. Here, we report that estrogen receptor β (ERβ) binds N-CoR and SMRT in the presence of agonists, but not antagonists, in vitro and in vivo. This ligand preference differs from that of ERα interactions with corepressors, which are inhibited by estradiol, and resembles that of ERβ interactions with coactivators. ERβ /N-CoR interactions involve ERβ AF-2, which also mediates coactivator recognition. Moreover, ERβ recognizes a sequence (PLTIRML) in the N-CoR C-terminus that resembles coactivator LXXLL motifs. Inhibition of histone deacetylase activity specifically potentiates ERβ LBD activity, suggesting that corepressors restrict the activity of AF-2. We conclude that the ER isoforms show completely distinct modes of interaction with a physiologically important corepressor and discuss our results in terms of ER isoform specificity in vivo
    corecore