19 research outputs found

    Novel Device for Measuring Lung Function using Oscillometry

    Get PDF
    The forced oscillation technique (FOT) is a non-invasive means of measuring lung mechanics. Broad-band oscillations in flow are delivered to the lungs while the resultant pressure oscillations are recorded. These signals are processed to yield the input impedance of the respiratory system (Zrs), which encapsulates the mechanical properties of the lung over the frequency range spanned by the oscillations. Clinically, can be used to assess pulmonary pathologies such as asthma and COPD. Standard methods of performing FOT are limited to the non-ambulatory clinical setting. Production of a light-weight device that operates without an external power source would allow real-time measurements of in a wide variety of more natural settings. Breath-driven oscillators, such as the Smith’s Medical Acapella and D R Burton vPEP, are currently used clinically to help cystic fibrosis patients clear mucus from their lungs by generating pressure oscillations that travel into the airways. We hypothesized that these oscillations could be used to determine . We performed FOT on healthy individuals without history of lung disease using a calibrated piston oscillator (Flexivent) to determine reference between 1 and 20 Hz. We then measured airway pressure and flow using the same sensors but with the oscillations produced by the Acapella and vPEP during tidal breathing. Respiratory resistance (Rrs), elastance (Ers) and Inertance (Irs) were determined by fitting the single-compartment model of the respiratory system to the time-domain signals from all three measurement devices. Correlation coefficients, Bland-Altman plots, and coefficients of variation were used to compare the results obtained with the three devices. We found bias values of 0.633857 [0.214382378, 1.053331908] cmH2O.s.L-1, 0.041333 [-0.38432604, 0.46699271] cmH2O.s.L-1 for comparing the Flexivent against the Acapella and vPEP, respectively. Coefficients of variation of 9.003%, 9.855%, and 9.643% were obtained for the Flexivent, Acapella, and vPEP, respectively. These results demonstrate that breath-driven oscillators are promising alternatives to conventional powered oscillators for the measurement of

    CORP: Measurement of lung function in small animals

    No full text

    A Continuous-Binding Cross-Linker Model for Passive Airway Smooth Muscle

    Get PDF
    Although the active properties of airway smooth muscle (ASM) have garnered much modeling attention, the passive mechanical properties are not as well studied. In particular, there are important dynamic effects observed in passive ASM, particularly strain-induced fluidization, which have been observed both experimentally and in models; however, to date these models have left an incomplete picture of the biophysical, mechanistic basis for these behaviors. The well-known Huxley cross-bridge model has for many years successfully described many of the active behaviors of smooth muscle using sliding filament theory; here, we propose to extend this theory to passive biological soft tissue, particularly ASM, using as a basis the attachment and detachment of cross-linker proteins at a continuum of cross-linker binding sites. The resulting mathematical model exhibits strain-induced fluidization, as well as several types of force recovery, at the same time suggesting a new mechanistic basis for the behavior. The model is validated by comparison to new data from experimental preparations of rat tracheal airway smooth muscle. Furthermore, experiments in noncontractile tissue show qualitatively similar behavior, suggesting support for the protein-filament theory as a biomechanical basis for the behavior
    corecore