14,246 research outputs found

    Microscopic Reaction Dynamics at SPS and RHIC

    Get PDF
    The current status of transport theoretical models applicable to the physics of the Relativistic Heavy-Ion Collider is reviewed. The time evolution of microscopic reaction dynamics - from early, hard, partonic rescattering up to soft hadronic interactions close to freeze-out is analyzed and key observables linked to the different reaction stages are discussed.Comment: 7 pages, 5 figures, invited talk given at the 15th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (QM 2001), Long Island, New York, January 15 - 20, 2001, to be published in Nucl. Phy

    Ultraviolet Resonance Lamp-Patent

    Get PDF
    Development of ultraviolet resonance lamp with improved transmission of radiatio

    Improved ultraviolet resonance lamp

    Get PDF
    Removal of the seal area from the path of the lamp discharge eliminates the gradual deterioration of lithium fluoride window surfaces from condensation of products formed by interaction of a resonant rare-gas discharge with window sealing materials. The discharge is confined to the inner tube

    Shear-Viscosity to Entropy Density Ratio of a Relativistic Hadron Gas

    Full text link
    Ultrarelativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) are thought to have produced a state of matter called the Quark-Gluon-Plasma, characterized by a very small shear viscosity to entropy density ratio η/s\eta/s, near the lower bound predicted for that quantity by Anti-deSitter space/Conformal Field Theory (AdS/CFT) methods. As the produced matter expands and cools, it evolves through a phase described by a hadron gas with rapidly increasing η/s\eta/s. We calculate η/s\eta/s as a function of temperature in this phase and find that its value poses a challenge for viscous relativistic hydrodynamics, which requires small values of η/s\eta/s throughout the entire evolution of the reaction in order to successfully describe the collective flow observables at RHIC. We show that the inclusion of non-unit fugacities will reduce η/s\eta/s in the hadronic phase, yet not sufficiently to be compatible with viscous hydrodynamics. We therefore conclude that the origin of the low viscosity matter at RHIC must be in the partonic phase of the reaction.Comment: 4 pages, 4 figures: Modified figures and revised discussion of entropy calculatio

    Differential equations of electrodiffusion: constant field solutions, uniqueness, and new formulas of Goldman-Hodgkin-Katz type

    Full text link
    The equations governing one-dimensional, steady-state electrodiffusion are considered when there are arbitrarily many mobile ionic species present, in any number of valence classes, possibly also with a uniform distribution of fixed charges. Exact constant field solutions and new formulas of Goldman-Hodgkin-Katz type are found. All of these formulas are exact, unlike the usual approximate ones. Corresponding boundary conditions on the ionic concentrations are identified. The question of uniqueness of constant field solutions with such boundary conditions is considered, and is re-posed in terms of an autonomous ordinary differential equation of order n+1n+1 for the electric field, where nn is the number of valence classes. When there are no fixed charges, the equation can be integrated once to give the non-autonomous equation of order nn considered previously in the literature including, in the case n=2n=2, the form of Painlev\'e's second equation considered first in the context of electrodiffusion by one of us. When n=1n=1, the new equation is a form of Li\'enard's equation. Uniqueness of the constant field solution is established in this case.Comment: 29 pages, 5 figure
    corecore