8 research outputs found

    Mesoporous Silica and Composite Nanostructures for Theranostics

    Get PDF
    We discus methods for fabrication of silica and composite nanoparticles, which can be used in various biomedical applications. The most promising types of such nanostructures are hollow silica nanosheres, sil-ica coated plasmon-resonant nanoparticles (gold nanorods and gold-silver nanocages) and nanorattles. Mesoporous silica shell can be doped by desirable targeting molecules. Here we present the results of for-mation of nanocomposites composed of gold nanorods and double-layer silica shell. The secondary mesopo-rous silica shell is doped with a photosensitizer (hematoporphyrine in our case). We demonstate some of promising theranostics applications of these nanocomposites for bioimaging and in vivo therapy of tumors. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3548

    Mesoporous Silica and Composite Nanostructures for Theranostics

    Get PDF
    We discus methods for fabrication of silica and composite nanoparticles, which can be used in various biomedical applications. The most promising types of such nanostructures are hollow silica nanosheres, sil-ica coated plasmon-resonant nanoparticles (gold nanorods and gold-silver nanocages) and nanorattles. Mesoporous silica shell can be doped by desirable targeting molecules. Here we present the results of for-mation of nanocomposites composed of gold nanorods and double-layer silica shell. The secondary mesopo-rous silica shell is doped with a photosensitizer (hematoporphyrine in our case). We demonstate some of promising theranostics applications of these nanocomposites for bioimaging and in vivo therapy of tumors. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3548

    Nonlinear Lattice Waves in Random Potentials

    Full text link
    Localization of waves by disorder is a fundamental physical problem encompassing a diverse spectrum of theoretical, experimental and numerical studies in the context of metal-insulator transition, quantum Hall effect, light propagation in photonic crystals, and dynamics of ultra-cold atoms in optical arrays. Large intensity light can induce nonlinear response, ultracold atomic gases can be tuned into an interacting regime, which leads again to nonlinear wave equations on a mean field level. The interplay between disorder and nonlinearity, their localizing and delocalizing effects is currently an intriguing and challenging issue in the field. We will discuss recent advances in the dynamics of nonlinear lattice waves in random potentials. In the absence of nonlinear terms in the wave equations, Anderson localization is leading to a halt of wave packet spreading. Nonlinearity couples localized eigenstates and, potentially, enables spreading and destruction of Anderson localization due to nonintegrability, chaos and decoherence. The spreading process is characterized by universal subdiffusive laws due to nonlinear diffusion. We review extensive computational studies for one- and two-dimensional systems with tunable nonlinearity power. We also briefly discuss extensions to other cases where the linear wave equation features localization: Aubry-Andre localization with quasiperiodic potentials, Wannier-Stark localization with dc fields, and dynamical localization in momentum space with kicked rotors.Comment: 45 pages, 19 figure

    Quantum correction to the Kubo formula in closed mesoscopic systems

    Full text link
    We study the energy dissipation rate in a mesoscopic system described by the parametrically-driven random-matrix Hamiltonian H[\phi(t)] for the case of linear bias \phi=vt. Evolution of the field \phi(t) causes interlevel transitions leading to energy pumping, and also smears the discrete spectrum of the Hamiltonian. For sufficiently fast perturbation this smearing exceeds the mean level spacing and the dissipation rate is given by the Kubo formula. We calculate the quantum correction to the Kubo result that reveals the original discreteness of the energy spectrum. The first correction to the system viscosity scales proportional to v^{-2/3} in the orthogonal case and vanishes in the unitary case.Comment: 4 pages, 3 eps figures, REVTeX

    Wide-range semiempirical equations of state of matter for numerical simulation on high-energy processes

    No full text
    corecore