4 research outputs found

    HF Radars for Wave Energy Resource Assessment Offshore NW Spain

    Get PDF
    Wave energy resource assessment is crucial for the development of the marine renewable industry. High-frequency radars (HF radars) have been demonstrated to be a useful wave measuring tool. Therefore, in this work, we evaluated the accuracy of two CODAR Seasonde HF radars for describing the wave energy resource of two offshore areas in the west Galician coast, Spain (Vilán and Silleiro capes). The resulting wave characterization was used to estimate the electricity production of two wave energy converters. Results were validated against wave data from two buoys and two numerical models (SIMAR, (Marine Simulation) and WaveWatch III). The statistical validation revealed that the radar of Silleiro cape significantly overestimates the wave power, mainly due to a large overestimation of the wave energy period. The effect of the radars’ data loss during low wave energy periods on the mean wave energy is partially compensated with the overestimation of wave height and energy period. The theoretical electrical energy production of the wave energy converters was also affected by these differences. Energy period estimation was found to be highly conditioned to the unimodal interpretation of the wave spectrum, and it is expected that new releases of the radar software will be able to characterize different sea states independentlyThis research was funded by INTERREG V-A Spain–Portugal (POCTEP) project RADAR ON RAIA (0461-RADAR ON RAIA-1-E) co-funded by the European Regional Development Fund (ERDF) (EU)S

    Quality Assessment and Practical Interpretation of the Wave Parameters Estimated by HF Radars in NW Spain

    Get PDF
    High-frequency (HF) radars are efficient tools for measuring vast areas and gathering ocean parameters in real-time. However, the accuracy of their wave estimates is under analysis. This paper presents a new methodology for analyzing and validating the wave data estimated by two CODAR SeaSonde radars located on the Galician coast (NW Spain). Approximately one and a half years of wave data (January, 2014–April, 2015) were obtained for ten range cells employing two different sampling times used by the radar software. The resulting data were screened by an updated method, and their abundance and quality were described for each radar range cell and different wave regime; the latter were defined using the spectral significant wave height (Hm0) and mean wave direction (Dm) estimated by two buoys and three SIMAR points (SImulación MARina in Spanish, from the wave reanalysis model by Puertos del Estado (PdE)). The correlation between the results and the particularities of the different sea states (broadband or bimodal), the wind and the operation of the devices are discussed. Most HF radar wave parameters’ errors occur for waves from the NNE and higher than 6 m. The best agreement between the Vilán radar and the Vilano-Sisargas buoy wave data was obtained for the dominant wave regime (from the northwest) and the southwest wave regime. However, relevant contradictions regarding wave direction were detected. The possibilities of reducing the wave parameters’ processing time by one hour and increasing the numbers of range cells of the radars have been validatedThis research was funded by Interreg Atlantic Area project MyCOAST (EAPA 285/2016) and INTERREG V-A Spain-Portugal (POCTEP) project RADAR_ON_RAIA co-funded by the European Regional Development Fund (ERDF) (EU). V.P.-M. and A.B. acknowledge financial support by CRETUS strategic partnership (ED431E2018/01), co-funded by the ERDF (EU) http://www.usc.es/cretus/S

    Extreme wave height events in NW Spain: a combined multi-sensor and model approach

    Get PDF
    The Galician coast (NW Spain) is a region that is strongly influenced by the presence of low pressure systems in the mid-Atlantic Ocean and the periodic passage of storms that give rise to severe sea states. Since its wave climate is one of the most energetic in Europe, the objectives of this paper were twofold. The first objective was to characterize the most extreme wave height events in Galicia over the wintertime of a two-year period (2015–2016) by using reliable high-frequency radar wave parameters in concert with predictions from a regional wave (WAV) forecasting system running operationally in the Iberia-Biscay-Ireland (IBI) area, denominated IBI-WAV. The second objective was to showcase the application of satellite wave altimetry (in particular, remote-sensed three-hourly wave height estimations) for the daily skill assessment of the IBI-WAV model product. Special attention was focused on monitoring Ophelia—one of the major hurricanes on record in the easternmost Atlantic—during its 3-day track over Ireland and the UK (15–17 October 2017). Overall, the results reveal the significant accuracy of IBI-WAV forecasts and prove that a combined observational and modeling approach can provide a comprehensive characterization of severe wave conditions in coastal areas and shows the benefits from the complementary nature of both systems.The authors also would like to thank the support by Interreg Atlantic Area project MyCOAST (EAPA 285/2016) co-funded by the ERDF (EU)S

    Radar on RAIA: High frequency radars in the RAIA Observatory

    Get PDF
    The RADAR ON RAIA project aims to update and extend beyond the Galician border the High Frequency (HF) radar network that has been operating since 2011 in the framework of the RAIA Observatory. The Project is allowing the establishment of a cross-border collaboration beyond the physical infrastructure itself, developing a sharing strategy of maintenance procedures, validation and data processing on both sides of the border, as well as an easy and public access to all the information. In addition, new products are being developed to exploit the potential of the HF radar technology.Peer Reviewe
    corecore