14,666 research outputs found

    Shear-invariant Sliding Contact Perception with a Soft Tactile Sensor

    Full text link
    Manipulation tasks often require robots to be continuously in contact with an object. Therefore tactile perception systems need to handle continuous contact data. Shear deformation causes the tactile sensor to output path-dependent readings in contrast to discrete contact readings. As such, in some continuous-contact tasks, sliding can be regarded as a disturbance over the sensor signal. Here we present a shear-invariant perception method based on principal component analysis (PCA) which outputs the required information about the environment despite sliding motion. A compliant tactile sensor (the TacTip) is used to investigate continuous tactile contact. First, we evaluate the method offline using test data collected whilst the sensor slides over an edge. Then, the method is used within a contour-following task applied to 6 objects with varying curvatures; all contours are successfully traced. The method demonstrates generalisation capabilities and could underlie a more sophisticated controller for challenging manipulation or exploration tasks in unstructured environments. A video showing the work described in the paper can be found at https://youtu.be/wrTM61-pieUComment: Accepted in ICRA 201

    A review of residual stress analysis using thermoelastic techniques

    No full text
    Thermoelastic Stress Analysis (TSA) is a full-field technique for experimental stress analysis that is based on infra-red thermography. The technique has proved to be extremely effective for studying elastic stress fields and is now well established. It is based on the measurement of the temperature change that occurs as a result of a stress change. As residual stress is essentially a mean stress it is accepted that the linear form of the TSA relationship cannot be used to evaluate residual stresses. However, there are situations where this linear relationship is not valid or departures in material properties due to manufacturing procedures have enabled evaluations of residual stresses. The purpose of this paper is to review the current status of using a TSA based approach for the evaluation of residual stresses and to provide some examples of where promising results have been obtained

    Plastic-crystalline solid-state electrolytes: Ionic conductivity and orientational dynamics in nitrile mixtures

    Full text link
    Many plastic crystals, molecular solids with long-range, center-of-mass crystalline order but dynamic disorder of the molecular orientations, are known to exhibit exceptionally high ionic conductivity. This makes them promising candidates for applications as solid-state electrolytes, e.g., in batteries. Interestingly, it was found that the mixing of two different plastic-crystalline materials can considerably enhance the ionic dc conductivity, an important benchmark quantity for electrochemical applications. An example is the admixture of different nitriles to succinonitrile, the latter being one of the most prominent plastic-crystalline ionic conductors. However, until now only few such mixtures were studied. In the present work, we investigate succinonitrile mixed with malononitrile, adiponitrile, and pimelonitrile, to which 1 mol% of Li ions were added. Using differential scanning calorimetry and dielectric spectroscopy, we examine the phase behavior and the dipolar and ionic dynamics of these systems. We especially address the mixing-induced enhancement of the ionic conductivity and the coupling of the translational ionic mobility to the molecular reorientational dynamics, probably arising via a "revolving-door" mechanism.Comment: 9 pages, 7 figures; revised version as accepted for publication in J. Chem. Phy

    Optimal Computation of Avoided Words

    Get PDF
    The deviation of the observed frequency of a word ww from its expected frequency in a given sequence xx is used to determine whether or not the word is avoided. This concept is particularly useful in DNA linguistic analysis. The value of the standard deviation of ww, denoted by std(w)std(w), effectively characterises the extent of a word by its edge contrast in the context in which it occurs. A word ww of length k>2k>2 is a ρ\rho-avoided word in xx if std(w)ρstd(w) \leq \rho, for a given threshold ρ<0\rho < 0. Notice that such a word may be completely absent from xx. Hence computing all such words na\"{\i}vely can be a very time-consuming procedure, in particular for large kk. In this article, we propose an O(n)O(n)-time and O(n)O(n)-space algorithm to compute all ρ\rho-avoided words of length kk in a given sequence xx of length nn over a fixed-sized alphabet. We also present a time-optimal O(σn)O(\sigma n)-time and O(σn)O(\sigma n)-space algorithm to compute all ρ\rho-avoided words (of any length) in a sequence of length nn over an alphabet of size σ\sigma. Furthermore, we provide a tight asymptotic upper bound for the number of ρ\rho-avoided words and the expected length of the longest one. We make available an open-source implementation of our algorithm. Experimental results, using both real and synthetic data, show the efficiency of our implementation

    Strain monitoring of tapestries: results of a three-year research project

    Get PDF
    The outcomes of an interdisciplinary research project between conservators and engineers investigating the strain experienced by different areas of a tapestry are described. Two techniques were used: full-field monitoring using digital image correlation (DIC) and point measurements using optical fibre sensors. Results showed that it is possible to quantify the global strain across a discrete area of a tapestry using DIC; optical fibre and other sensors were used to validate the DIC. Strain maps created by the DIC depict areas of high and low strain and can be overlaid on images of the tapestry, creating a useful visual tool for conservators, custodians and the general public. DIC identifies areas of high strain not obvious to the naked eye. The equipment can be used in situ in a historic house. In addition the work demonstrated the close relationship between relative humidity and strain

    Surface plasmon modes and the Casimir energy

    Full text link
    We show the influence of surface plasmons on the Casimir effect between two plane parallel metallic mirrors at arbitrary distances. Using the plasma model to describe the optical response of the metal, we express the Casimir energy as a sum of contributions associated with evanescent surface plasmon modes and propagative cavity modes. In contrast to naive expectations, the plasmonic modes contribution is essential at all distances in order to ensure the correct result for the Casimir energy. One of the two plasmonic modes gives rise to a repulsive contribution, balancing out the attractive contributions from propagating cavity modes, while both contributions taken separately are much larger than the actual value of the Casimir energy. This also suggests possibilities to tailor the sign of the Casimir force via surface plasmons.Comment: 4 pages, 3 figures, revtex

    Lignin-First Fractionation of Softwood Lignocellulose Using a Mild Dimethyl Carbonate and Ethylene Glycol Organosolv Process

    Get PDF
    A mild lignin-first acidolysis process (140 °C, 40 min) was developed using the benign solvent dimethyl carbonate (DMC) and ethylene glycol (EG) as a stabilization agent/solvent to produce a high yield of aromatic monophenols directly from softwood lignocellulose (pine, spruce, cedar, and Douglas fir) with a depolymerization efficiency of 77–98 %. Under the optimized conditions (140 °C, 40 min, 400 wt % EG and 2 wt % H2SO4 to pinewood), up to 9 wt % of the aromatic monophenol was produced, reaching a degree of delignification in pinewood of 77 %. Cellulose was also preserved, as evidenced by a 85 % glucose yield after enzymatic digestion. An in-depth analysis of the depolymerization oil was conducted by using GC-MS, HPLC, 2 D-NMR, and size-exclusion chromatography, which provided structural insights into lignin-derived dimers and oligomers and the composition of the sugars and derived molecules. Mass balance evaluation was performed

    Search for correlation effects in linear chains of trapped ions

    Get PDF
    We report a precise search for correlation effects in linear chains of 2 and 3 trapped Ca+ ions. Unexplained correlations in photon emission times within a linear chain of trapped ions have been reported, which, if genuine, cast doubt on the potential of an ion trap to realize quantum information processing. We observe quantum jumps from the metastable 3d 2D_{5/2} level for several hours, searching for correlations between the decay times of the different ions. We find no evidence for correlations: the number of quantum jumps with separations of less than 10 ms is consistent with statistics to within errors of 0.05%; the lifetime of the metastable level derived from the data is consistent with that derived from independent single-ion data at the level of the experimental errors 1%; and no rank correlations between the decay times were found with sensitivity to rank correlation coefficients at the level of |R| = 0.024.Comment: With changes to introduction. 5 pages, including 4 figures. Submitted to Europhys. Let

    Hydrodynamic theory of an electron gas

    Full text link
    The generalised hydrodynamic theory of an electron gas, which does not rely on an assumption of a local equilibrium, is derived as the long-wave limit of a kinetic equation. Apart from the common hydrodynamics variables the theory includes the tensor fields of the higher moments of the distribution function. In contrast to the Bloch hydrodynamics, the theory leads to the correct plasmon dispersion and in the low frequency limit recovers the Navies-Stocks hydrodynamics. The linear approximation to the generalised hydrodynamics is closely related to the theory of highly viscous fluids.Comment: 4 pages, revte
    corecore